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1. Introduction

The QDX is a high performance, four-band 5W Digital modes transceiver with CAT control and
built-in USB sound card. QRP Labs presents QDX, a digital transceiver with a ratio of performance
to price not available until now.

* Four band 80, 40, 30 and 20m; 5 W from 9 — 10V supply

* Clean single signal output (zero residual carrier, zero unwanted sideband)

« Solid state PIN-diode switched Low Pass Filters and solid state Band Pass Filters

» Solid state transmit/receive switching

* High performance embedded-SDR SSB receiver using 112dB 24-bit stereo ADC chip

* Built-in USB sound card: 48ksps 24-bit stereo

* Builtin USB Virtual COM port serial for CAT control

» Si5351A Synthesized local oscillator with better than 0.001Hz resolution and high precision
25MHz TCXO reference as standard

« Built-in signal generator

* Built-in suite of configuration and analysis tools

» Lifetime free firmware upgrades with QRP Labs Firmware Update (QFU) bootloader for
easy firmware update on any OS with no extra software, or drivers, or programming
hardware

* All SMD components pre-installed by factory, only through-hole component soldering by the
kit constructor

* Receive current: 100mA; Transmit current 1.0 — 1.1A (9V supply, 5W output)

* Only four connectors: USB (audio and serial for CAT), Power, PTT (external amp) and RF

* Optional smart aluminium extruded enclosure measuring just 89 x 63 x 25mm

No test equipment is required to build, align and operate this digi modes transceiver. There are no
alignment tasks.

We hope you enjoy building and operating this kit! Please read this manual carefully, and follow
the instructions step by step in the recommended order. Later in the manual the circuit design is
described in detail and we recommend reading and understanding this section too, to get the
maximum enjoyment and education from your new radio.

Typical performance measurements are shown in the measurements section.

The operating manual is a separate document and will get you started with QDX and your
WSJT-X or other digi modes software in minutes.

PLEASE READ THE BASIC ASSEMBLY AND USE INSTRUCTIONS IN
THIS MANUAL VERY CAREFULLY BEFORE APPLYING POWER TO
THE BOARD!
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IMPORTANT!

QDX can be built for 9V or 12V operation! You need to decide NOW!

A 9V QDX produces 5 W power output from a supply voltage of 9V or a little over. At 12 V QDX
could be producing 8 W power output which is likely to cause over-heating and perhaps failure of
the BS170 final transistors.

Operation of QDX at more than 6W power output is NOT RECOMMENDED.

If you wish to operate using a 12 V supply, you may use a two turn secondary winding on the
output transformer T1, so a 3:2 ratio instead of the 3:3 turns ratio documented in this manual.
Remember this when you come to the assembly step for preparing and installing the output
transformer T1. The “primary” is still 3 turns, with a tap half way at 1.5 turns. The secondary (no
tap) will now be only two turns.

The chart below shows the measured power output vs supply voltage for the standard 3:3 winding
(Red line); at 12 V supply the output power of around 8 W is too high and likely to cause over-
heating or failure of the power amplifier transistors. If you wish to use a supply of 12 - 13 V the 3:2
winding style is more suitable and will produce 4 —5 W output for 12 — 13 V supply. The graph
shows 40m but other bands are very similar.

40m power output vs Voltage, transformer windings

== 3:2 winding
~%— 3.3 winding

Power output (W)

4 b G 7 i) ) 10 11 12 13 14

Supplyvoltage (V)
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2. Assembly

2.1 General guidelines

Assembly of this kit is quite straightforward, most components are SMD and have already been
pre-assembled by the PCB factory. The usual kit-building recommendations apply: work in a well-
lit area, with peace and quiet to concentrate. Some of the other semiconductors in the kit are
sensitive to static discharge. Therefore, observe Electrostatic discharge (ESD) precautions.

And | say it again: FOLLOW THE INSTRUCTIONS!!
Don't try to be a hero and do it without instructions!

A jeweler's loupe is really useful for inspecting small
components and soldered joints. You'll need a fine-
tipped soldering iron too. It is good to get into the habit of
inspecting every joint with the magnifying glass or
jeweler's loupe (like this one | use), right after soldering.
This way you can easily identify any dry joints or solder
bridges, before they become a problem later on when
you are trying to test the project.

You could also take photos with a mobile phone, and use
the phone’s zoom features to view the board in detail.

Triple check every component value and location BEFORE soldering the component!

It is easy to put component leads into the wrong holes, so check, check and check again! It is
difficult to de-solder and replace components, so it is much better to get them correctly installed
the first time. In the event of a mistake, it is always best to detect and correct any errors as early
as possible (immediately after soldering the incorrect component). Again, a reminder: removing a
component and re-installing it later is often very difficult!

Please refer to the layout diagram and PCB tracks diagrams below, and follow the steps carefully.
Use of a good quality soldering iron and solder is highly recommended for best results!
The following diagrams show the PCB layout and track diagrams of the QDX.

Tracks shown in BLUE are on the bottom layer. Tracks shown in RED are on the top layer. There
are only two layers (nothing is hidden in the middle). Not shown in this diagram are the extensive
ground-planes, on both sides of the board. Practically everything on both layers that isn't a RED or
BLUE track, is ground-plane! The two ground-planes are connected at frequent intervals (not more
than 0.1-inches) by vias.

NOTE: the capacitor lead spacing on the PCB is 0.1-inches (2.54 mm) and most of the capacitors
are sized appropriately for this. From time to time, due to availability constraints, we may have to
use capacitors with 0.2-inch lead spacing (5.08 mm); this is not a mistake, it is just due to
component availability. In this case simply use a pair of long-nosed pliers (etc) to straighten out
the wires and make them spaced for the 0.1-inch pads.
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2.2 Parts list

Many components are SMD, pre-soldered to the PCB in the factory. Only through-hole
components need to be installed by the constructor. SMD components in the parts list are
identified in the Description column and by the text colour being purple.

Resistors
Qty Value Description Component nhumbers
2 0-ohms |[SMD R31, 32
6 47-ohms |SMD R22, 23, 24, 25, 40, 41
2 100-ohms [SMD R11, 34
2 330-ohms |SMD R2, 4
8 470-ohms |SMD R10, 12, 14, 26, 27, 28, 33, 43
4 1K SMD R1, 6, 20, 21
6 10K SMD R3, 5, 13, 17, 18, 42
5 100K SMD R15, 16, 19, 36, 39
7 470K SMD R7, 8,9, 30, 35, 37, 38

Capacitors (50V, Multi-layer Ceramic capacitors)

Qty| Value Description Component nhumbers
1 22pF |Label “220” C29
1 30pF |Label “300” C31
2 47pF |SMD C27, 32
2 56pF |Label “56J” C10, 28
1 82pF |Label “820” Cl1
1 100pF |Label “101” C9
1 180pF |Label “181” C20
1 220pF |Label “221” C30
1 270pF |Label “271” C7
2 390pF |Label “391” C6, 19
2 470pF |Label “471” C5, 14
2 820pF |Label “821" C13, 18
1 | 1200pF |Label “122” C12
4 4.7nF |SMD C44, 45, 59, 61
3 10nF |SMD C36, 58, 60
4 33nF |SMD C39, 40, 41, 43
25 0.1uF |SMD C15, 16, 17, 21, 22, 23, 24, 25, 26, 33, 35, 37, 46, 47,
49,51, 52, 53, 54, 57, 66, 71, 72, 73, 74
2 1uF SMD 3216 tantalum C63, 69
10 2.2uF |SMD C1l, 2, 3,4, 8, 34, 38,42, 48, 50
2 10uF [SMD Co64, 68
4 10uF |SMD 3216 tantalum C62, 65, 67, 70

QRP
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Semiconductors

Qty Description Component numbers
5 SMD: 1N4148 D7,8,9
6 1N4007 diode D1,2,3,4,5,6
1 SMD: AMS1117-3.3 IC1
1 SMD: 78M05 IC2
2 SMD: FST3253 IC3, 4
1 SMD: 74ACTO08 IC5
1 SMD: 24C64 IC6
1 SMD: LM4562 IC7,9
1 STM32F401RBT6 IC8
1 PCM1804 IC10
1 SMD: Si5351A IC11
2 SMD: BSS84 MOSFET Q1.12
6 SMD: BSS123 MOSFET Q2,3,4,5,6, 13
4 BS170: TO92 MOSFET Q8, 9,10, 11
1 SMD: BC857 PNP Q14
1 SMD: BC817 NPN Q15
1 SMD: AO4307 MOSFET Q7
1 SMD: Red LED DIAG
1 3mm Red LED PANEL
1 SMD: 25MHz TCXO module TCXO
Inductors
Qty Description Component numbers
5 SMD: 47uH L11, 13, 15, 16, 18
4 47uH radial inductor L1,5,7,9
1 T37-2 toroid (red), 2.40 uH (24t) L2
1 T37-2 toroid (red), 2.88 uH (26t) |L6
1 T37-6 toroid (yel), 1.06 uH (18t) L3
1 T37-6 toroid (yel), 393 nH (11t) L4
1 T37-6 toroid (yel), 1.20 uH (20t) L8
1 T37-6 toroid (yel), 525 nH (13t) |L10
1 T50-2 toroid — tapped, see text |L12
1 FT37-43 10t L14
1 BN43-202 binocular, 3:3 T1
1 FT37-43 10t trifilar T2

QRP
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Miscellaneous

Qty Value Description
1 2.1 mm DC 2.1 x 5.5 barrel DC power connector
1 USB B USB type B connector
1 BNC RF connector
1 3.5mm jack 3.5mm Stereo connector (PTT)

1 PCB Main PCB, 86 x 59.5 mm

1 310 cm 0.33 mm diameter wire (AWG #28)
1 50 cm 0.60 mm diameter wire (AWG #22)
1 M3 12 mm Steel 12mm long M3 screw

1 M3 Steel M3 nut

1 M3 12 mm Steel 12mm diameter M3 washer

Enclosure (OPTIONAL)

Qty Value Description
2 Top, Bottom Extruded aluminium top and bottom cover
1 Front panel Laser etched, drilled for 3mm LED
1 Rear panel Laser etched, drilled for three connectors
8 M2.5 machine screw Screws to secure end panels
4 Rubber foot Self-adhesive rubber foot

QDX assembly Rev 1.11




Inventory parts

2.3
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2.4 Install all the ceramic capacitors

Install all 16 through-hole capacitors in accordance with the following diagram. The procedure is
so easy that | have included all capacitors in a single assembly step rather than doing one
diagram for each capacitor value. Nevertheless be very careful to insert the correct value
capacitors in the correct places. Mistakes are hard to correct later.

In the diagram, the component label (capacitor body inscription) is written inside the capacitor
body which is coloured yellow. The actual value e.g. 220pF is written in red text next to the
capacitor. Note that the leads of the 56pF capacitor (“56J”) need to be bent to fit the 2.5mm holes.

Qty | Value Description Component numbers
2 470pF | Through-hole, label “471” C5,14
2 390pF |Through-hole, label “391” C6, 19
1 270pF |Through-hole, label “271” c7
1 100pF |Through-hole, label “101” C9
2 56pF |Through-hole, label “56J" C10, 28
1 82pF  |Through-hole, label “820” Cl1
1 1200pF |Through-hole, label “122” C12
2 820pF |Through-hole, label “821” C13, 18
1 180pF |Through-hole, label “181” C20
1 22pF  |Through-hole, label “220” C29
1 220pF |Through-hole, label “221” C30
1 30pF |Through-hole, label “300” C31
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2.5 Install 1N4007 diodes
Install the six 1N4007 diodes D1-D6.

Pay attention to the orientation of the diodes which is critically important. The diodes have a black
body and a white stripe. The white stripe end must be aligned with the white stripe on the image
on the PCB silkscreen. In the diagram below, all the white stripe ends of the diodes are on the left
of each diode position.
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2.6 Install 47uH inductors

Install the four 47uH radial inductors L1, L5, L7 and L9. Bend one lead over 180-degrees so that
the inductor body stands up vertically at 90-degrees to the PCB.

The orientation of these is not particularly important, but my recommendation is to follow the
silkscreen PCB pattern, putting the body (longer lead) nearer to the PCB lower edge (as orientated
in the diagram below) and the wire (shorter lead) nearer to the top side.
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2.7 Install PA transistors

Install the transistors in the positions shown, with their flat faces flush against the PCB.

Use the 12mm M3 bolt, washer and nut to firmly press the transistor faces against the PCB, as

shown.

Refer to the diagram and photographs below.
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2.8 Assemble and install transformer T1

Transformer 1 is wound on the BN43-202 binocular ferrite former, using the thick 0.6mm (AWG
#22) wire. This wire is also used for L14 so do not use all of it on the transformer.

It is a good idea to de-burr the toroid because sharp edges can damage the insulating enamel on
the wire — however be careful since the ferrite is brittle and can easily be broken. So GENTLE
scraping of the edges with something sharp like a knife is possible.

The transformer has two windings, both 3 turns (3:2 if building for 12V supply). The three-turn
primary winding has a center-tap. In the nomenclature of binocular cored transformers, “1 turn”
means the wire passes through both sets of holes, ending up back at the end where it started.
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Assembly of this transformer is best done in steps as follows. Please read all the steps before
commencing the assembly:

,.III T 152 53

Step 1: Carefully unwrap the thick 0.6mm (AWG #22) wire, and straighten it ensuring there are no
kinks.

Step 2: Pass the wire through both holes, starting at the top left, as shown. This is the first turn of
the 3-turn primary winding.

Step 3: Now pass the wire through the top hole of the binocular core, back from left to right. This is
the next half-turn of the primary winding, bringing the number of turns so far to 1.5; now we must
make the center tap.

.-'/!

——— Step 2
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Step 4: Now pass the wire back through the bottom hole of the binocular core, from right to left;
but do not pull it tight. Leave a small loop as shown in the photograph. This will be soldered into
the center-tap pad on the PCB.

Step 5: Wind the wire through both the top hole of the binocular core and the bottom hole, pulling
it a little tight as normal; this forms the final turn of the 3-turn primary winding. You end up with the
wire coming out of the bottom left hole as shown; cut it to about 1cm protrusion.

Step 4 Step 5

Step 6: Squeeze together the center-tap to try to avoid subsequent confusion.

Step 7: Start the 3-turn secondary winding by pushing the wire from right to left through the bottom
hole of the binocular core, then from left to right through the top hole. This is the first turn.

Step 8: Push the wires through both holes two
more times to create the second turn: right to left
through the bottom hole, then left to right through
the top hole. Now we have three turns on the
secondary. Cut the wire leaving about 1cm spare.

Remember to wind only 2 turns secondary, if
winding the transformer as 3:2 for 12V
operation.

Please refer to page 4 for details of 9V or 12V
operation choices.
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Step 9: Bend all the wires to point downward in
the position they will need to be, to fit through the
holes in the PCB.

Step 10: Now cut the center-tap loop; hopefully,
as mine are in this photograph, these two wires
formed by cutting the loop are LONGER than the
two ends of the 3-turn secondary, so that you
cannot mix anything up.

Step 11. Insert the wires into the holes on the
PCB. The two wires (of the cut loop) that belong

o) tha ~ Step 9
to the center-tap of the 3-turn primary, which are
the longer wires, are inserted into the middle hole

on the right-hand side; this hole is larger than the others and is big enough for both wires to fit in.

Step 10

Step 12: Now we need to get the enamel off the wire. Usually on thinner wire, | hold the soldering
iron to the wire until the enamel burns off. But that doesn’t work so well on thicker wire such as
this. So my technique here is to scrape the enamel off, at least partially, using wire cutters. The
correct pressure needs to be applied to the wire cutters, so as NOT to actually cut the wire. | hold
the wire cutter as close to the PCB as possible, then gently but firmly pull the cutter away from the
PCB, scratching off the enamel. Turn the cutter to a different angle and scrape again, 2 or 3 times.
It is not necessary to remove ALL the enamel, if you get a few good scrapes on, enough enamel
will be removed that the soldering iron heat will burn off the rest of the enamel and a good joint will
be achieved. Do this for the 4 winding ends first, leave the two center-tap for later, to make it
easier.

Step 13: Cut each of the four wire-endings, leaving about 2mm or less, sticking up from the PCB.
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Step 14: Solder the four wire endings. At each pad, hold the soldering iron firmly, apply plenty of
solder, and wait for about 10 seconds. This will ensure a good connection, and any remaining
enamel will be burned away.

Step 15: Finally repeat the procedure with the two center-tap wires that came through the large
center hole. Scrape them, cut them to 2mm, and solder them. Apply plenty of solder and hold the
soldering iron tip to the joint for maybe 15 seconds, to really be sure of a good joint and burning
away any remaining enamel.

-
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Step 16: Check that none of the wires protrude more than 2mm from the surface of the PCB, since
if you are using the optional aluminium enclosure, there are only a few mm clearance.

Step 17: Verify good connections for all five soldered joints of T1 using a DMM set to resistance or
continuity mode. My cheap DMM hasn’t got a continuity mode and I'm using the 2000-ohm
resistance mode; in this mode when there is continuity, the reading on mine shows 001 (not zero-
ohms; this is just a DMM thing, of no significance).
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You should see continuity between all the points labeled A in the photo below. Touch the probes
to pairs of these points, to verify continuity.

You should see continuity between the points labeled B also. Touch the two probes to the two
pads labeled B and check for continuity.

Finally, there should be NO connection between A and B. Hold one probe on any A point and the
other probe on a B point. That should read infinite resistance (no continuity).

If any of these tests fail, then you have a soldering problem somewhere, or the wrong wire in the
wrong hole, or some short-circuit somewhere etc.
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2.9 Prepare and install tapped inductor L12

L12 is an inductor wound on a T50-2 toroid (red colour, large size), having several taps which are
switched in according to the operating frequency (band). There are 41 turns in total, with taps at
19, 30 and 36 turns. The diagram shows the location of the taps at 19, 30 and 36 turns, which
have larger holes, such that two wires can be inserted.

Carefully unwind and cut off 75cm of the 0.33mm (AWG #28) enameled wire, and straighten it,
ensuring no kinks.
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Step 1. Begin winding L12 as shown. Remember that in the nomenclature of toroidal inductors,
each time the wire passes through the center of the toroid counts as 1 turn.

Step 2: Wind 19 turns then make a loop between the 19™ and 20" turns. This is for the 19 turn tap.
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Step 3: Wind up to the 30" turn then make another loop between the 30" and 31 turns. This is for
the 30 turn tap.

Step 4: Wind up to the 36" turn then make another loop between the 36" and 37" turns. This is for

the 36-turn tap.
Step 3

30 turns | B

| 36 turns

19 turns {
<04 19 turns )30 turns

Step 5: Wind the remaining turns to complete the total of 41 turns.

Step 5 \U)19 turns

Step 6: Now with a pair of pliers, you can squeeze each of the loops into a sharp
point, such that it is easy to fit through the large holes at the 19, 30 and 36-turn
taps (see photo, right).

Step 7: Insert all the wires in their
correct holes.

You should pull them firmly from the
underside of the board to ensure that |
there are no loose wires on the top side. &

Now cut each wire to about 2mm length
(at most) and solder in place. It is
essential to remove the enamel from
the wire. My favourite method of doing
this is simply to hold the soldering iron
to the joint, with plenty of solder, for at
least 10 seconds. The enamel burns
away in this time.
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Step 8: Verify the joints are properly soldered, by using a DMM in continuity testing mode (if it has
this mode) or check for zero ohms in resistance mode. On the reverse of the PCB, check for
continuity between pins 3, 4, 5, 6 and 9 of IC3 as shown. You should measure 0 ohms (continuity)
between any pairs of these. If you do not, then there is a mistake somewhere, most probably a
failure to burn away the enamel at one or more of the L12 connections to make a good joint.
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2.10 Wind and install L14

L14 consists of 10 turns of 0.6mm (AWG
#22) wire wound on an FT37-43 toroid
(black colour). Firstly, you have to
understand that there’s a right way and a
wrong way to wind a toroidal inductor,
too. The terms “right” and “wrong” are

probably not as appropriate here, as Sta rt _

“handedness” or “winding direction”.

There are two directions you can wind ' e
the toroid. If you choose the right one,

then all the wires will automatically end I T i 1

up near the holes they are to be soldered WI n d I n g d I reCt I on
into. If you do it wrongly, it will be a bit

messy.

For all the toroidal inductors in the QDX kit, you will get it right, if you start as shown (photo, above
right) and pass the wire through the toroid from the top side down through the hole, out and then
around and over again; accumulating turns in the anticlockwise direction.

With this in mind, wind 10 turns and install the toroid. As with the output transformer T1, |
recommend scratching the enamel with a knife or wire-cutter, and then cutting it to about 2mm
length on the underside of the board. Then solder, applying the soldering iron for at least 10
seconds and plenty of solder, to ensure a good connection. Do NOT tin the wires before inserting
into the holes: the holes are not large enough to accommodate tinned wires.
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2.11 Install Low Pass Filter toroids

Now we’ll wind and install the six Low Pass Filter toroids using
0.33mm (AWG #28) enameled wire. Remember, as per the
previous direction, using the right winding direction will make

L2 L6 13

the toroids much easier to fit to the PCB._ Refer to the t{iblta_ 2 40uH 288uH 1.06uH
below. Make sure to count carefully and install the toroids in 24t 26t 18t

the correct places! Remember that each time the wire passes
through the center of the toroid counts as one turn. Spread the
turns evenly with a small gap.

Winding the toroids as tightly as possible will slightly improve

the performance of the Low Pass Filters. But don’t pull so L1d

|_8 .

O
=3
| Tl

; - L4
tightly that you break the wire! 1.20uH 393nH  525nH
The following table lists the required number of turns, cut wire 20t 11t 13t
length, and inductance.
Band Part number Core Inductance | Number of turns Wire length
80m L2 T37-2 (RED) 2.40uH 24 36cm
80m L6 T37-2 (RED) 2.88uH 26 39cm
40m L3 T37-6 (YELLOW) 1.06uH 18 29cm
40m L8 T37-6 (YELLOW) 1.20uH 20 30cm
30m/20m L4 T37-6 (YELLOW) 393nH 11 20cm
30m/20m L10 T37-6 (YELLOW) 525nH 13 22cm
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2.12 Wind and install trifilar toroid T2

This toroid needs some care so please follow these instructions very carefully.

Cut three lengths of 0.33mm (AWG #28) enameled wire, of length 20cm each. These three pieces
now need to be tightly twisted together to make the trifilar wire. My method for this is to tie one end
in a knot around a small screwdriver shaft. Similarly tie the other end around another small
screwdriver. Now clamp one end somehow to something solid. You could use a vise, if you have
one. If you don’t, then you have to get creative and think of something. Here | taped it to the edge
of the desk. Now you can twist the screwdriver at the free end, repeatedly until you twist the three
wires together thoroughly. You need to keep the wire under a little tension to keep the twists
evenly spaced.

A 20cm length of wire should have about 60 twists. It is
not critical.

The end result is something like the photo (right). The
measurement scale is in cm.

Now cut off the untidy ends, and this is the piece of wire
that will be used to wind the FT37-43 toroidal core as a
trifilar transformer.
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Hold the core between thumb and finger. Pass the wire first from above, to below. Then take the
wire from below, and bring it around to pass through the toroid again to form the second turn. After
each turn, ensure the wire is fitting snugly around the toroidal core. Wind 10 turns on the core.
Each time through the toroid’s central hole counts as one turn. Cut off the excess wire, leaving
about 2.5cm remaining.

First tu r
goes top to bottom

Now it's necessary to identify which wire belongs to which winding. You have three windings
twisted together, they all use the same wire. The only way to do this is with a DMM as continuity
tester. First, untwist and straighten the wire ends that are not wound around the toroidal core.

Now tin the last few mm at the ends of each wire. You can do this by scraping off the enamel then
tinning with the soldering iron; or, if your soldering iron is powerful enough, hold the wire end in a
blob of molten solder for a few (maybe 10) seconds, until the enamel burns off.

Now use a DMM to test for
continuity. Re-arrange the wires
so that there is continuity from
A-A, B-B, and C-C in this photo.

Carefully keep this orientation of
wires and insert the transformer
this way into the PCB. BE
CAREFUL not to lose the
orientation of the wires! The
right wires must be in the right
holes, so that the windings are
connected correctly in the
circuit!

Refer to the diagram on the following page to see the correct orientation.

Once the wires are inserted through the correct holes in the PCB, and pulled tight, check for
continuity between the pairs of wires in holes A, B and C once AGAIN. It is much easier to get this
right first time, than it is to make repairs later!
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When you are satisfied that the wires are all in the correct holes, you can cut them to a length of
about 2mm and solder them. It is best to cut-and-solder one wire at a time, since if you cut all the
wires to 2mm length then the toroid is more likely to fall out before you've had a chance to solder
any of the wires. If that happens, it will be tough to get all the wires back in the correct holes again.

There are numerous SMD components in the vicinity so be VERY careful when soldering the wires
of toroid T2, NOT to touch any of the nearby SMD components!

Once again my method

involves holding the iron
and plenty of solder on the 3%
joint for at least 10 N
seconds to make sure the §

enamel burns off
completely.

The photograph (right)
shows the trifilar wire
ending holes labeled A B
C on the lower side of the
PCB. You should check
for continuity between
each pair of pins A-A, B-B
and C-C; and the triplet of &

IC3 pin 7.
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2.13 Install the 3mm red status LED

Identify the shorter of the two wires of the 3mm red LED and bend it 90-
degrees right at the body of the LED.

Bend the other wire 90-degrees but at a distance of approximately 2.5mm
(0.1-inches) from the body of the LED (see photograph, right).

Insert the LED leads into the holes in the PCB. As an additional check, the
LED will have a flat part on its body, which will sit flat on the surface of the
PCB. Solder the LED In place but be careful that it is accurately aligned in
position, protruding over the board edge at right-angles. This will ensure that
later if you are using the optional enclosure, the LED will fit without difficulty.
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2.14 Install connectors

The final components to install are the connectors, from top right to bottom right:

X1: USB B connector

X2: DC Power connector

X2: PTT (mis-named X2, should be X3)

X4: BNC RF connectors — NOTE: there is a footprint for an SMA connector that you may
install if you wish; however this will have gaps around it as it pokes through the enclosure.

It is very important to install these carefully aligned so that they are straight and at right-angles
with respect to the PCB. The connector body should not protrude beyond the edge of the PCB.
When the connectors are well-aligned, you will have no trouble fitting the PCB into the optional
enclosure. Clip off excess leads and tabs to make sure nothing protrudes more than 1.5mm.

Assembly of the
QDX kit PCB is now
complete!
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2.15 Optional enclosure
Installation of the QDX PCB in the optional enclosure is very straightforward and self-explanatory.

1. Install the screws at the bottom left and bottom right of the front panel, fixing it to the bottom
half of the enclosure. Note that the enclosure top and bottom are identical.

2. If the short edges (front and back, i.e. LED status edge, and connectors edge) of the PCB
feel rough, it can be a good idea to gently file them so that the PCB edge is square.

3. Transformer T2 is a little close to the edge of the board for comfort. | don’t think that the
pads will touch the enclosure rails, as long as you didn’'t use excessive solder. But to be on
the safe side and avoid worry — it's a nice idea to put a bit of tape on the board edge next to
T2, such that it insulates the pads on both sides of the board. You may then find that the
board is too stiff to slide along the rails — in that case use a file to gently smooth of some of

4. Gently slide the PCB into the guide-rail grooves in the enclosure bottom.
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5. Install the two screws at the bottom left and bottom right of the rear panel, fixing it to the
bottom half of the enclosure.

6. Fit the top half of the enclosure. Note that one side has an “I-tongue” and the other side has
a “U-groove” and this is repeated on both halves (top and bottom) of the enclosure.
Therefore the top half will only fit the bottom half, “one-way-round”. If it does not appear to
sit correctly, rotate the top half 180-degrees. Secure the top with the remaining screws.

7. Finally you may, if you wish, fit the nut to the BNC connector. | generally leave off the
washer. The nut may be omitted too, it is not really required and should in any event not be
over-tightened since there is a small gap between the back surface of the rear panel, and
the BNC connector body. The washer can be installed on BNC connector the INSIDE of the
enclosure to fill some of that gap. It's a matter of trying it out and seeing what fits best in
your case and gives you a result you’'re most happy with.

8. If desired, attach the self-adhesive rubber feet to the bottom of the enclosure in the corners.

|
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3 Design

3.1 Summary

Traditionally it was normally assumed that transmission of digital modes requires a computer, to
generate the audio tones, and an SSB transceiver, to modulate those to RF and transmit them via
an antenna.

Yet — the widespread assumption that an SSB transceiver is REQUIRED is in fact absolutely
incorrect, at least for a wide category of digital modes transmitting a single tone frequency shift
keyed signal. This class of transmissions are NOT SSB, they are a single carrier, frequency
modulated. Potentially this can provide simplification of the radio transceiver design, delivering
both higher performance and lower cost.

Why is this important? An SSB transmitter design is necessarily relatively complex and a non-
trivial undertaking for several reasons. The audio signal must be converted to RF by an SSB
exciter. An exciter may commonly take the form of a superheterodyne architecture having a
modulator, IF filter (crystals) and another mixer to convert to the final RF operating frequency. It
then requires a linear amplification chain to raise the signal amplitude to the required power output
at the antenna port. An alternative architecture is a phasing network exciter which makes use of
phasing techniques to null the unwanted sideband, and converts directly from baseband to RF.
Again it is followed by a linear amplification chain. In both cases considerable attention to the
design is required, to minimize the residual carrier frequency, and the unwanted sideband.

Linearity must be maintained throughout the amplifier chain to the antenna port, to avoid
splattering onto adjacent frequencies. Even though the audio signal is theoretically a single audio
tone, harmonics of the audio tone may be present particularly if the audio level is too high, and the
carrier suppression and unwanted sideband are never perfect; so there is plenty of potential for
generation of intermodulation products, hence the need for good linearity throughout. A linear
amplifier (for example, Class AB) has low efficiency compared to non-linear amplifiers such as
Class C. Low efficiency means higher current draw for a given power output (less battery-friendly
in portable scenarios), and higher heat production, probably requiring heatsinking of the PA
transistors — increasing size, cost and weight.

Double Sideband (DSB) is even worse — the designs are simpler but here we have an equal
amplitude unwanted sideband emission. Half the transmitter’s power is wasted on this unwanted
sideband, which potentially can interfere with users of adjacent channels. On receive, we suffer a
3dB degradation in noise floor at best, and at worst, interference from signals in the unwanted
sideband. With the strong double tone (both sidebands) the potential for intermodulation products
due to non-linearities in the amplification chain is higher. Except under optimal conditions, and
even then with difficulty, two DSB transceivers cannot QSO with each other! A DSB transceiver
can only QSO with an SSB transceiver at the other end. DSB is the only mode which cannot even
communicate with itselfl Some would say, an abomination of a mode.

If there were a way to convert the audio tones from the computer, to RF, without going through the
SSB modulation process and linear amplification, it could solve many problems.

Back in 2012 the QRP Labs Ultimate QRSS/WSPR/Digi transmitter kit was the first kit to generate
and transmit digital signals standalone with no PC required, and without an SSB transmitter. It
used just a microcontroller calculating the required frequency shifts and commanding an RF signal
generator — then the AD9850 Direct Digital Synthesis (DDS) chip — to produce the required
frequencies. Several iterations of the kit evolved over the years, to the current Ultimate3S
http://grp-labs.com/ultimate3/u3s which can transmit quite a list of digital modes in the standalone
beacon application.
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However for QSO digital modes, using computer (PC) software to encode and decode the audio,
SSB transceivers remained the norm.

In the second half of 2019, | was thinking about FT8, and a number of simple low cost FT8
transceiver Kkits that were available (DSB transceivers), none of which offered a particularly good
performance. | realized that there IS a better way to do this, that will dramatically increase the
performance without increasing the price. Straight away | designed QDX and built the prototype.

The fact that the computer is generating the audio, does not need to stop us from generating a
single RF tone from an RF signal generator, just as the Ultimate3S QRSS/WSPR/Digi kit does. A
microcontroller can analyze the audio arriving from the PC, and determine the audio frequency of
the tone; then add that to an RF base frequency (which on an SSB radio, we would call the “USB
Dial Frequency”), to determine the correct RF carrier frequency to generate for transmission. The
rest is then a matter of commanding an RF generator to produce the calculated frequency, and
amplifying it for presentation to the antenna. The generated signal is absolutely clean, having only
harmonically related unwanted spurious emissions which can be taken care of in the conventional
way by Low Pass Filtering.

The importance of this technique cannot be understated.

* We no longer need a complex SSB modulator involving multiple mixers, IF filters (or
phasing in the case of the direct method).

* No more linear amplification chain — we can use higher efficiency non-linear amplifier
classes, reducing the need for heatsinking, and lowering transmit current, very battery
friendly.

* The unwanted sideband simply DOES NOT EXIST. It isn’t just “there but attenuated”
depending on how well the transceiver was designed and aligned - it just isn’t there at all.

» Similarly the carrier also does not exist. Carrier suppression in a modulator depends on
how well the mixer is balanced and is never perfect. But here, we generate a single tone
directly — and there’s NO SSB carrier at all. Zero.

* Itis impossible to overdrive this design by turning up the audio volume too high on the PC.
Therefore it is impossible to generate a messy signal that splatters on to adjacent
frequencies.

With this in mind, the rest of the QDX transceiver design falls into place, around this central
concept.
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3.2 Block Diagram

Double-balanced

Switched Quadrature Low-noise audio 24-bit stereo
Voltage Band Pass SamplingDetector pre-amplifiers 48ksps ADC
Regulators Filters —
. I (left)
DCin X

RF

Filters Switch
L 2N —

indicates control signals
\from the microcontroller|

- ~o 1L

) ot

5 \\ right

Switched
Low Pass TX /RX

12C bus 12S bus

RF signal
generator < Control

0 4

->

USB Virtual | 24-bit USB
COM port | Sound card

Power
Amplifier

USE Connector

QDX consists of the following circuit blocks:

1. A synthesized Local Oscillator using the famous Si5351A Digital PLL signal generator chip.

A 0.25ppm 25MHz TCXO is included as standard as the PLL reference.

. Low Pass Filtering to attenuate emissions at harmonics of the operating frequency. Filters

are provided to cover 80, 40, 30 and 20m bands, and selected using solid state, PIN diode
switching.

A solid state transmit/receive switch — no bulky, noisy, expensive, unreliable relays here!

A switched receiver band pass filter to provide some degree of protection to the mixer
against out of band signals.

A high performance, double balanced Quadrature Sampling Detector to mix the incoming
RF signals to baseband and produce | and Q signals.

A low noise pre-amplifier for the | and Q signals.

High performance 24-bit 48ksps (Kilo Samples Per Second) stereo Analog To Digital
Converter (ADC) chip with 112dB of dynamic range.

An embedded Software Defined Radio (SDR) receiver which implements, digitally, a 12kHz
Intermediate Frequency superheterodyne receiver with excellent performance and
unwanted sideband suppression, also implementing a sharp digital filter.

An embedded 24-bit 48ksps stereo USB Sound card — no more noisy, cluttered audio
cables!

10. A CAT control serial interface, also over the same USB cable, to allow the PC software to

control the radio (frequency, transmit/receive switching etc) in a standard way.

11.The microcontroller performs single cycle frequency analysis of the audio tone, and

commands the Si5351A Signal generator to produce the necessary RF frequency.
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12. A Class-D Push-Pull power amplifier that is small, low cost, high efficiency, and produces
very low even harmonic output levels, reducing the demands on the Low Pass Filter.

13.Voltage regulation and supply decoupling.

In subsequent sections, each of these blocks will be described in detail.

3.3 Synthesized local oscillator

Generating a stable, precise oscillator signal was one of the most challenging aspects of
transceiver design. Modern semiconductors however, make it one of the easiest building blocks of
the radio.

The synthesizer used in the QDX is the same as in the QCX 5W CW transceiver, and various
other QRP Labs products: the Si5351A. This is a Digital Phase Locked Loop (PLL or DPLL)
synthesizer which provides three separate frequency outputs, each having a frequency range
spanning 3.5kHz to 200MHz. The frequency stability is governed by the a crystal reference.

The block diagram (right) is taken from the
SiLabs Si5351A datasheet. Briefly, the 27MHz -
reference oscillator is multiplied up to an internal
Voltage Controlled Oscillator in the range 600- XA I:

0sc

VDD ; VDDO
sy Si5351A 3-Output

J L
PLL
~

900MHz (the PLL), then divided down to

- Tl
PLL ultiSyni

produce the final output frequency. The B —[] CLK1

multiplication up and the division down are both

: : : SDA rc MultiSynth
fractional and so the frequency resolution is <L th_| eroce ok
extremely finely controlled. The chip has two _

PLLs and three output divider units. GND 10-MSOP

XB

0

For best jitter performance, the Si5351A datasheet recommends the use of even integer dividers
(no fractional component) in the MultiSynth dividers and in the QDX transceiver design, this
recommendation is followed.

25MHz
system clk 12C bus
A Vpp=33V
MMy
—AWW—t
To receiver
== mixer 1‘
il
. 5o
gl >k
T g
g
= | &
[}
: 1
Clk2 Signal Generator £8
fo W °E
QDX RF Port . f
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The Si5351A datasheet dictates the use of a 25 or 27MHz crystal or oscillator. In the QDX a
25MHz crystal was originally used, together with an unusual NPN/PNP transistor oscillator circuit,
which produces a near rail-to-rail (3.3V peak-peak) output that is perfect for driving both the
Si5351A and the STM32 processor.

However during testing it was found to provide an unsatisfactory level of frequency stability, which
was very disappointing and boards had already been ordered. In the graph below, an example
operating session is shown. QDX was operated on the 20m band and the operating frequency was
monitored as an audio tone on a separate receiver. 20m was used as it is the highest frequency of
operation of QDX and would therefore illustrate the worst-case scenario. The nominal operating
frequency was 1kHz audio and was not altered during the test.

In the graph, the red line is the audio frequency. The blue line is the output of the STM32'’s internal
temperature sensor ADC input. It is uncalibrated (to temperature), and just indicates relative
temperature changes.

25MHz Crystal
1050
1040
1030

1020

'
]

1010

1000

o0

Temp Senzor ADC
as0 = 20m Audio tone

a7o

060

Frequency (Hz} and Temp (AD

a50
a40
930

azo
00:00:00 00:07:12 00:14:24 00:21:36 00:28:48 00:36:00 00:43:12 00:50:24 00:57:36 01:04:48 01:12:00

Time (hours)

The QDX was switched on at 00:00 on the left side of the graph. An initial warm-up drift of 30Hz
downward drift can be seen (red line). At around 12 minutes, FT8 operations were commenced,
having the usual 15 second slots with alternating transmit and receive cycles, resulting in a duty
cycle a little under 50% (FT8 transmissions are a bit less than the 15 second cycle). FT8
operations ceased at around 47 minutes, by which time the enclosure had warmed up
considerably and the frequency had dropped almost 90 Hz from power-on! As the unit cooled
down, the frequency drifted back upwards again. The temperature curve (blue) gives a relative
indication of the temperature of the PCB.

FT8 has a bandwidth of about 50Hz. You can see that a 90Hz drift in half an hour of operation is
rather unacceptable! Anybody who has tried FT8 operation will know that the band is usually full of
QSOs and you struggle to find a clear spot to transmit in, often slotted in with other stations closely
on either side. With such a bad drift rate, you would drift right across the other stations’
transmissions — or to avoid that, have to keep making little adjustments to the operating audio
frequency in WSJT-X to counteract the drift! Horrible!

The problem was resolved in the first QDX batch by designing a neat little PCB containing a
25MHz TCXO that is fit to the QDX during assembly, INSTEAD of the 25MHz crystal.

In subsequent PCB revisions the 25MHz TCXO is already mounted on the main PCB.
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The output amplitude of the TCXO is 1.1V peak-peak which is enough for the Si5351A, but
insufficient to drive the STM32 oscillator input. It is therefore buffered using the original NPN/PNP
transistor crystal oscillator circuit, which results in a rail-to-rail (3.3V peak-peak) near-square wave.

After fitting the TCXO in place of the original 25 MHz crystal, the drift is reduced to +/- 1Hz or so
which is unnoticeable and entirely acceptable.

The Si5351A has a large number of internal 8-bit registers to control the synthesizer configuration
and output frequency, and these are programmed by the microcontroller using the 12C serial
protocol. 1K resistors R20 and R21 are pull-ups required for the operation of the bus at 400kHz.

There are three outputs of the Si5351A synthesizer and these are all used to good advantage. The
CIkO/1 outputs are used to drive the Quadrature Sampling Detector (QSD) during receive.

A feature of the Quadrature Sampling Detector is that either the RF input, or the LO input, must
provide two paths in 90-degree quadrature. This is normally applied at the Local Oscillator where it
can be easily controlled for best performance. So, two oscillator signals are required, with the
same frequencies but a precise 90-degree phase offset. Generating this quadrature Local
Oscillator signal is always difficult. Analogue phase shift circuits have limited accuracy. Often a
divide-by-4 circuit is used, to produce quadrature oscillator outputs from an oscillator input at 4x
the reception frequency. This also creates challenges particularly as you try to increase the
reception frequency to cover higher bands. For example, on 10m e.g. 30MHz, a local oscillator at
120MHz is required and the divide-by-4 circuit must be able to operate at such a high frequency.
Devices such as the 74AC74 can do so, but pushing it higher into the 6m band cannot be done
with the 74AC74.

The Si5351A has a phase offset feature, which is not really very clearly described in the SiLabs
documentation. However, QRP Labs has perfected the technique to put two of the Si5351A
outputs into precise 90-degree quadrature, which is maintained without tuning glitches as the
frequency is altered. It's a nice development because it eliminates one more circuit block (the
74ACT74 divide-by-4 circuit), again reducing complexity and cost. To the best of my knowledge this
IS the first time the Si5351A has been implemented in a product directly driving a QSD with two
outputs in quadrature (no divide-by-4 circuit).

The CIk0/1 Si5351A outputs are also routed to the transmit driver. During transmit, ClkO and Clk1
are configured with a 180-degree phase difference, this allows them to cleanly drive the QDX RF
power amplifier, which is a Push-Pull configuration. It's a very neat way to obtain the necessary
push-pull driver signals in a highly symmetric and low parts-count way.

Finally the CIk2 output is used as a separate signal generator, it is routed back to the QDX
transceiver’'s RF port via the 100K resistor R19. This signal generator can be used by the QDX
diagnostic and self-performance measurement tools, to sweep the audio filter and sweep the RF
bandpass input filter. CIk2 is normally switched off, and when these functions are needed, it is
enabled in conjunction with CIkO/Clk1 operating the receiver mixer.

An additional function of the 25MHz TCXO and its NPN/PNP transistor buffer amplifier, is to
provide the precise 25MHz system clock for the STM32. The STM32 microcontroller contains its
own internal PLL clock generation systems that are highly configurable. In QDX, the 25MHz
reference oscillator is fed to the STM32 external clock input, and the STM32 is configured to
provide:

* 24.576 MHz clock for the 512 fs input to the 24-bit stereo 12S ADC chip (24.576 /512 =
48,000) — fs is the number of clock pulses for each analog to digital conversion.
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* 48 MHz clock for the STM32’'s USB peripheral to enable it to provide USB functionality for
the USB sound card and the CAT Virtual COM serial port.

* 72 MHz for the main CPU clock

None of these signals are absolutely precise but they are very close to the target values and well
within specified allowable errors for the protocols involved (USB, I12S). The 72 MHz CPU clock is a
little below the maximum allowable 84 MHz for this processor, but this is acceptable since the
performance at 72 MHz is plenty adequate to achieve all desired functionality for QDX.

3.4 Solid state transmit/receive switch

During transmit, the receiver must be D — Transmit TG RECEiVEf
disconnected from the RF port of QDX

because a 5W signal is 45V peak-peak 1= HE‘EE'iVE Band Pass Filter

which would be too much for the receiver - A
input mixer 1C3. |

Y
A spectacularly high “Off” isolation is not Y™
required, only sufficient attenuation to
protect the mixer. During transmit, the Digital J_
Signal Processing of the | & Q channels is
suspended and there is no audio output of J_
the receiver. In the QDX application a totally
clean click-free transition between Receiver -|-

and Transmit states is not needed — a A
welcome relaxation compared to the /T\
demands of a CW transceiver. J_ YV VY

The transmit/receive switch is implemented

by a single BSS123 MOSFET. The source is N _
at DC ground (via 47 uH inductor L4). The From Low Pass Filter

control signal from the microcontroller
switches the MOSFET on or off. Capacitor C35 close to the MOSFET gate is found to be
necessary to prevent inductive pickup of the 5W RF from partially switching on the MOSFET.

During receive, the transmitter drivers are all at zero potential, so the transmitter power amplifier
transistors are in a high impedance state and do not affect the receive operation.

This simple transmit/receive switch very conveniently avoids the need for relays. Relays may be
great for some applications but if a relay was used here for transmit/receive switching it would add
bulk, weight, cost, and reduce reliability.
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3.5 Switched receiver band pass filter

In any receiver, performance is improved by excluding strong out of band signals using a band
pass filter. In QDX a rather simple series resonant L-C filter is used, which although limited, still
provides some useful protection to the mixer. The mixer is a Quadrature Sampling Detector which
is a high dynamic range, high IP3 mixer and therefore has excellent intermodulation performance.
Together, the BPF and QSD provide a high performance receiver front end.

The band selection switch is a FST3253 dual 1:4 analog multiplexer IC, containing in other words,
two 4-way switches.

The switch connects one of YO to
Y3, to the W pin; and at the same
time one of X0 — X3 to the Z pin.
The selection of which of the four
possibilities is connected, is
made by two control lines named
A and B (pins 14 and 2
respectively) which are "

connected to output pins of the

STM32 microcontroller. —"—
The Y-W switch connects one of . " "
capacitors C29, C31, C28 and To

C30 (for 20, 30, 40 and 80m QDX
respectively) to pin 9 (W). Rx

Mixer

The second switch X-Z then
selects one of four taps of
inductor L12.

it

Inductor L and capacitor C
M

values are chosen such that the
LC resonance is centered onthe  From .
digi modes section of each band. Tx/Rx A Microcontroller

band selection
The whole BPF is DC-biased to Switch
2.5V midrail via the trifilar phase
splitting transformer T2 of the Receive mixer.

More sophisticated Band Pass Filters could be used but would come at the expense of complexity,
board area, and cost.
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3.6 Double-balanced Quadrature Sampling Detector

o
m >0
g —>180 o
= - 0
L . Lo
a 3 E
c j= =Y
- =
. 5
ﬁl
c2
En.
L ] g:g
. [1+]
= 90 m =
> 270

1 | s oo

Clk1, CIkO from Local Oscillator

This circuit implements a double-balanced Quadrature Sampling Detector, mixing from RF to
baseband. The FST3253 is a dual 1:4 multiplexer which is often seen in QSD circuits. It has fast
switching times and very low on resistance of only a few ohms. The input signal is switched by the
quadrature LO to each of the four integrating capacitors C39, C40, C41 and C43 in turn, for 90-
degrees of the RF cycle each. The result is that the audio difference (beat) between the RF input
and LO input appears across each of the four integrating capacitors, with four phases at 0, 90, 180
and 270 degrees.

The 33nF capacitors and the low source resistance results also provide a relatively fast roll-off of
the audio response. This is effectively a narrow band pass filter since any incoming RF more than
a few 10’s of kHz away from the LO frequency is greatly attenuated. The QSD is inherently a very
high performance mixer design with high third order intercept and dynamic range, and low loss
(0.9dB).

The FST3253 dual switch is often connected with the two switches simply paralleled together
(which does halve the switch ON resistance). But | prefer the double-balanced mixer configuration
which provides higher performance. The double-balanced configuration requires two RF inputs
180-degrees out of phase (opposite to each other). This is provided here by trifilar-wound
transformer T2.

R17, R18 and C38 provide a 2.5V DC bias to the RF signal through the mixer and audio pre-
amplifiers. It also provides mid-rail DC bias to the Band Pass Filter component switches in the
previous section. This simple bias does not source or sink any significant current due to the
balanced nature of the system, therefore no buffering is required.

Note that the ClkO and CIk1 signals from the local oscillator have 47-ohm resistors in series; some
people say this reduces ringing artifacts in the detector though | have not been able to find any
evidence for this.
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3.7 Low noise
balanced differential
pre-amplifiers

£

I-channel

The same LM4562 dual
operational amplifier chip is
used in QDX as is used in
the QCX-series CW
transceivers and QRP Labs
receiver module. This is a
low noise op-amp providing
an excellent combination of
high performance and low
cost.

WW

i—L+
5

BE 77 SauesilS IS

|

L Com
R Com

Low noise is important for the
pre-amplifier because it
determines the overall
sensitivity of the receiver (in
conjunction with losses of the
RF front end).

K
?f

From QSD
To ADC

r%
%

El
.

—W—— R +

This part of the circuit was P §
substantially redesigned for

J_
the Rev 3 QDX PCB, due to =r= § e e
the fact that the formerly I |
used AK5386 ADC chip had 5 :|> Q-channel

become obsolete. The 70 "_

chosen replacement,

PCM1804 claims even higher

performance than the AK5386 but the PCM1804 has a differential input. One input could be
ignored, feeding the | and Q signals into only one terminal of each ADC (left and right); however,
this would sacrifice 6dB of the potential 112dB claimed dynamic range of the PCM1804.

The circuit used here is derived from the instrumentation amplifier topology that usually has three
op-amps; the third op-amp being a unity-gain difference amplifier of the outputs of the first two. An
instrumentation amplifier arrangement brings several key benefits in this application:

* Excellent balance means common mode noise signals are canceled out

* Very high input impedance makes the loading on the Quadrature Sampling Detector
capacitors very light, as well as balanced

* Provides positive and negative phase | and Q signals suitable for feeding the differential
PCM1804 ADC chip

The disadvantage is that we require twice the number of op-amps and more resistors and
capacitors — but you know what they say about free lunches.

In the circuit shown above, the ADC chip itself, having differential input, performs the difference
function so no 3" op-amp is required in the instrumentation amplifier. The “Common” output from
the ADC chip is used as the DC bias reference for the QSD signals which are decoupled from the
DC bias of the QSD itself, by 0.1uF capacitors. The 4.7nF capacitors provide high frequency
attenuation beyond the 48kHz sampling bandwidth. The 10nF capacitors C58 and C60 are
recommended by Texas Instruments in the PCM1804 datasheet and who am | to argue.
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The gain of the instrumentation amplifiers is only about 20dB and is chosen to best match the
dynamic range of the PCM1804 ADC in the application.

The I and Q channel contain all necessary phase and amplitude information to allow the following
SDR to demodulate any mode, although only single sideband is used in QDX.

3.8 Analog to Digital Converter

I -
I com +—{|}— ~"7

>

From differential

amplifiers

R
LA
A

Q com Fo A Ol
+ “\:‘

Microcontroller 12S bus

The PCM1804 Analog to Digital Converter (ADC) chip is a high performance stereo ADC chip with
differential input. Its purpose is to convert the analog | and Q-channel signals to a digital
representation to allow digital signal processing by the microcontroller, which implements a
Software Defined Radio (SDR). The PCM1804 specifies a 112dB dynamic range and is used at 48
ksps (kilo samples per second).

All the Texas Instruments PCM1804 datasheet recommendations in regard to layout and supply
decoupling with tantalum capacitors, are followed (they most probably had good reasons for
writing all that stuff and even if they didn’t, I'm not about to take risks here).

In this design, the PCM1804 chip acts as Master of the I12S interface and the STM32 12S
peripheral acts as Slave. The STM32 generates a 24.576 MHz clock signal (12S_MCLK) which is
512 x the sample rate (i.e. 48,000 x 512 = 24,576,000). From this, the PCM1804 generates the bit
clock (12S_SCLK) at 3.072 MHz (64 bits per sample — two 32-bit fields, for Left and Right
channels, of which 24-bits are populated). The processor also generates the Frame clock (LRCK)
at 48 kHz. The 12S_RESET signal is supplied by the microcontroller and must be activated once at
power-up to reset the ADC.
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3.9 Embedded Software Defined Radio

This schematic fragment contains the whole microcontroller section around the STM32F401RB

microcontroller.
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The microcontroller section of the schematic includes a 24C64 (8K x 8-bit) serial 12C EEPROM
chip. Unlike the ATmega328 processors used in many other QRP Labs kits, the STM32 used here
does not contain internal EEPROM so for storage of configuration parameters it is necessary to
either use Flash storage or EEPROM. The problem with Flash storage is a limited 10,000 write-
cycle specification which may be a little low. Therefore an external EEPROM chip is used.

The 4-pin programming header at the bottom right of the diagram is for factory use only to install
the QFU bootloader on the QDX board. An onboard diagnostic LED is also used only for factory
validation. LEDL1 is a front panel LED on the QDX which shows basic status information such as
whether or not the unit is transmitting or receiving, or in bootloader (firmware update) mode. A
transmit-enable output switches on the transmit driver to enable the RF power amplifier.

Other than that, all the magic goes on in the firmware, which is not open source.

QRP
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The Software Defined Radio receiver (SDR) implements digitally a superhet receiver having a
12kHz Intermediate Frequency. The reason for doing this rather than processing directly at
baseband as a direct conversion receiver, is that it eliminates any issues with power line hum —
the harmonics of 50Hz or 60Hz (depending on your country) and other noise which exists around
OHz.

The receive signal path processing contains the following stages implemented in the Digital Signal
Processing (DSP):

* Retrieve a block of 32 24-bit audio | and Q samples from the ADC chip via the I12S bus

*  “Mix” to 12 kHz Intermediate frequency, including a Low Pass Filter in the factor-of-four
decimation process; the reason for the choice of 12 kHz as the intermediate frequency is
that the mathematics becomes relatively easy, as it is exactly one quarter of the 48 kHz
sample rate.

* A Hilbert Transform applies a 90-degree phase shift to one of the | and Q paths relative to
the other; this is the equivalent of the analog all-pass phase shift network implemented
using op-amps in the QCX CW transceiver.

* Sum or subtract the two paths to produce either the Upper or Lower sideband; QDX is
capable of demodulating either sideband but digital operations normally use upper side
band (USB) which is therefore the default operating mode.

* Apply a digital audio filter, which has a passband from 150Hz to 3.2kHz
* Interpolate back to 48 ksps audio
* Send the 48ksps audio samples to the PC over the USB Digital Audio link.

The performance of the receiver was tested using the internal signal generator to inject a signal
into the QDX input at a defined offset; Argo software was used on the PC to determine the
received signal amplitude.

Two different measurement runs were performed, with quite some elapsed time between them (17
months!). In both cases, there is no change to the firmware but the measurements were performed
on different prototypes. There is no attempt at amplitude or phase compensation, which does not
appear to be needed (the results are already excellent).

The vertical scale in dB has an arbitrary zero reference; the important point is the difference
between the upper sideband (blue line), and the unwanted lower sideband (red line).
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In the first example (shown below) dating from 06-Apr-2020, the worst case unwanted sideband
suppression is at -64dB relative to the wanted sideband, which occurs at about 2,200Hz audio.

USB vs LSB, un-compensated QDX, 6-Apr-2020 eSS
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The second measurement (September 2021) shown below, shows a worst case unwanted
sideband -60dB relative to the wanted sideband, again at about 2200Hz audio. The difference of
4dB between the two prototypes will have been due to component tolerances and build-style
variations. In both cases, this is really good performance!

The second measurement was painstakingly made with much finer resolution (lower frequency
steps) than the earlier measurement, which shows more clearly the behaviour of the Digital Signal
Processing.

—USB

QDX: USB and LSB e

-10

[ T

-40

50

60

-0

Amplitude (dB)

-80
-80
-100 ‘\
-110
-120
] 500 1000 1500 2000 2500 3000

Frequency (Hz)

@RP L= QDX assembly Rev 1.11



3.10 Embedded 24-bit 48ksps stereo USB Sound card

QDX has its own embedded 24-bit 48ksps stereo USB sound card! But there is not a real physical
little piece of hardware strapped inside, like the PCB from a sound card dongle or something.
Instead, the USB sound card is actually coded in firmware directly by the STM32 microcontroller,
the same single microcontroller that is also doing everything else, in the design.

This is an extremely important design feature of QDX.
A radio transceiver having an audio input has a number of disadvantages:
* An audio cable is one more cable to have to plug in between your radio and your PC.

* There may be level mis-matches between the PC generating the audio signal, and the
audio input of the radio. The PC will need to be carefully set up to set the volume such that
the radio produces the expected RF proper power level, but does so without distortion
(clipping, intermodulation distortion, splatter, however you want to refer to it). With the built-
in QDX sound card, no level adjustment is necessary; set the volume to the max and rest
assured that the QDX will never be overdriven (in fact it CANNOT be).

* Audio cables are a recipe for picking up noise, particularly in most of our lab environments
where we power our equipment from grid power. You will often see 60 Hz (US) or 50 Hz
(most of the world ex-US) harmonic lines on spectrum waterfalls. Ground loops can be hard
to eliminate. With QDX and its built-in sound card, numeric audio sample data is transferred
back and forth between the PC and QDX with zero loss, zero distortion, no hum or other
noise. The quantization error due to sampling at 48ksps is minimal but is in any case
matched by WSJT-X so a higher sample rate would not achieve an increase in
performance. The benefit of direct digital numeric transfer between PC and QDX, without
any conversion errors or noise, is enormous!

You can buy cheap USB dongles and connect them between your radio and your PC. But the
dynamic range IS limited, and not just by the 6dB/bit theoretical relationship between bit depth and
dynamic range, but also by the actual noise floor of the converter (the least significant bits are in
other words, just noise).

In contrast, QDX uses a 24-bit stereo ADC chip with 112dB dynamic range specification. If you
look at the specification of any expensive USB external sound card, and the price of getting
anything like 112dB, you will appreciate the true significance of this.

All Digital Signal Processing in QDX is carried out at full floating point resolution, not limited to 16-
bits as many SDR implementations do. In its communication with the PC this is rounded to 24-bits
and transferred via the USB Digital Audio device class. WSJT-X only uses 16-bits so the PC
sound system will automatically re-sample but still, the 24-bit USB sound is sent by QDX to
support any future PC applications which use a higher resolution.

The result is a very high performance radio receiver, and equally, an excellent performance
transmit side due to the zero-loss, zero-noise transfer of audio digitally from the WSJT-X synthesis
straight to the QDX frequency analysis.
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3.11 CAT control serial interface

QDX includes an emulated virtual COM (serial) port, all in the same STM32 processor that does
everything else. The STM32 processor therefore actually includes THREE USB device classes:

1. Compound device class (a container for more than one other device classes)
2. Digital audio
3. Virtual COM (serial) port

The introduction of the compound device class makes QDX effectively, contain a virtual USB hub,
to which is connected a Digital Audio USB device (the USB sound card) and a Virtual COM Serial
Port. This allows a single USB cable to be used between QDX and the PC, the USB cable
transfers both digital audio and serial data seamlessly between the two.

An important benefit of the CAT control interface is that it allows QDX to have a flexible tunable
VFO and band switching, all without any actual physical controls. No physical controls are at all
necessary because everything is done under the control of the WSJT-X software as CAT
controller. Elimination of display and physical controls is not just a matter of lowering costs, it also
makes the QDX extremely easy to use. Want to change bands? Simply click the drop-down in
WSJT-X and QDX will automatically change bands. Want to use a different frequency (for
example, change mode to WSPR, or perhaps even change software application to JS8Call)? The
software application will automatically switch you to the correct frequency for the mode you select.

Another advantage of CAT control is that WSJT-X contains an option to effect the transmit/receive
switch either by VOX (Voice activation, or in other words, the presence of audio) or by an actual
CAT command to enable transmission. QDX also supports both methods, there is an entry in the
configuration screen that allows VOX to be enabled or disabled. The default setting is “disabled”,
which means a CAT command is necessary to switch from Receive to Transmit (and back).

The danger of VOX is that it is all too easy to accidentally have the QDX selected as the sound
card for system noise outputs etc... then when a WhatsApp message from someone arrives, and
the PC does its fancy “pling” sound, well that'll be faithfully converted to a series of audio tones by
QDX and transmitted accordingly. So disabling VOX and insisting on a proper CAT command to
switch on to transmit, is the recommended modus operandi.

QDX also has a rich user interface via the Virtual COM port, by connecting a terminal emulator on
a PC, to the virtual COM port. This is a whole blissful and enormous topic by itself, it allows
interaction with all the built-in analysis tools in QDX as well as the configuration screen and
features such as factory reset and firmware update.

3.12 Audio frequency analysis

Determination of the audio frequency arriving from the PC software (for example, WSJT-X) is key
to the whole operation.

My first thought was a Fast Fourier Transform (FFT). However that quickly turns out to be a lot
more difficult than it at first sounds. For the FT8 mode for example, the audio range is a 3kHz
band. It isn’t so trivial to set up a FFT with 6.25Hz buckets, that wide, and would require a
significant amount of processing power, such that | would need to use a more powerful (and
expensive!) microcontroller than I'd really like. Furthermore WSJT-X modes are heavily optimized
such that the period is the inverse of the tone spacing, so | might need to do TWO interleaved FFT
analysis runs offset by half the tone spacing. Then there’s the problem of the frequency slide when
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a tone changes. Furthermore, the QDX would have to know which mode was being transmitted, in
order to configure the size (and hence speed) of the FFT buckets. | started to shudder and shake!

| soon realized that FFT would be the sledge hammer approach and there is a much simpler and
faster way, which also offers higher accuracy.

The simple approach is to detect the zero crossings of the sinewave, and carefully time the period
between zero crossings. Frequency is the reciprocal of Period, so once you have the period, a
moment later you know the frequency too, and the problem is solved. It turned out to be very easy
to implement this method, and the accuracy is rather impressive. Experimentally, a SINGLE
CYCLE measurement of the frequency at 1500Hz audio frequency leads to frequency accuracy of
around +/- 0.05 Hz. More than enough!

NOTE: 1500Hz is an unfair frequency to measure at, because each cycle fits into an exact number
of audio samples; 32 audio samples at 48,000 cycles per second make up one 1500Hz audio
cycle. This sets us up for an extremely low error cycle measurement. So to make things fair, |
actually offset the frequency for the test, to around 1520 Hz, so that the cycle doesn’t contain an
exact number of samples.

In actual fact we don’t really need to update the frequency of the Si5351A Synth 1500 times per
second... that's excessive. QDX has configuration options that allow you to specify an averaging
period, where a specified number of sound samples AND a specified number of audio cycles must
both be exceeded, in order to terminate the audio cycle measurement. The default parameters are
set for a minimum of one cycle, but a minimum of 480 samples. 480 samples is 0.01 seconds and
since we never go as low as 100Hz, the dominant criteria is therefore a measurement of at least
0.01 seconds.

With this default configuration, we get 100 audio frequency measurements per second, and
experimentally the frequency accuracy is better than +/- 0.002 Hz. Amazing.

As for the details of the analysis, study the following hypothetical sinewave:
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Remember that we have a built-in 24-bit 48ksps stereo USB sound card. Accordingly we get
48,000 samples per second. In this example | am assuming WSJT-X is used; WSJT-X outputs 16-
bit samples, so the extent of the sinewave data is from -32,768 to + 32,767. The sound samples
are received from the PC via the USB cable and are absolutely FREE of any noise. It's a lossless
and zero noise transfer between the WSJT-X software on the PC, and the QDX’s firmware. The
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sequence of sample numbers received are EXACTLY what the WSJT-X software generates in its
audio software-DDS.

We also know that the sound samples arrive at exact equal intervals of one 48-thousandth of a
second. This is effectively the time base of our period measurement. It is not necessary to run any
kind of actual timer inside the microcontroller, because in this instance we already have the luxury
of knowing we get exactly 48,000 samples per second from the PC.

In the graph, the sine wave is shown starting at sample 0, with amplitude zero. In general, except
in special cases (such as 1500Hz as mentioned above), we won’t have a subsequent zero
crossing indicated by a sample with value zero. We will have a sample ABOVE zero, followed by a
subsequent sample BELOW zero. It is easy to detect this situation in the firmware code, just by
looking for two successive samples, the first one being positive and the second one negative.

In QDX the firmware detects positive-to-negative zero crossings but it could equally well be done
on negative-to-positive zero crossings, it is of no importance. It would even be possible to
measure the frequency of half-cycles, with half the accuracy. But this kind of extremism doesn’t
seem warranted, unless in future some kind of mode with very fast measurements is needed or
perhaps, we need to quickly measure the frequency of very low frequency audio signals.

Once we have a positive value followed by a negative value, and we know that they are 1/48000th
of a second apart, we now want to find the exact time of the zero-crossing itself. This is also quite
easy with a straight-line (linear) approximation. For small angles (in radians) the well known
approximation holds: x = sin(x).

The period of the measurement is then given by the fractional times calculated by interpolation, at
the start and end of the sample, plus the number of complete sound samples that occur
BETWEEN the zero crossings. This is a “number of samples”, and we know that there are 48,000
samples per second, so now it is easy to calculate the time in actual seconds which is the Period
of the audio cycle; then the frequency is 1/Period, and we’re done.

An example

To give a worked example, consider again the above simulated sinewave samples (generated in a
spreadsheet). For ease of viewing, there are not many samples per cycle, in other words, this is a
much higher frequency than we will be dealing with in practice; but it serves to make the principles
relatively easy to understand.

We see audio sample #5, which happens to have a value of +8481 (according to the
spreadsheet). Now the next sample, audio sample #6, has a value of -10126. We want to know
the fractional interval (in samples), that is at the start of this sinewave cycle. | have called this time
t1 in the diagram. Time t1 (as counted in samples), is a fraction 10126 / (8481 + 10126). This is a
straightforward linear interpolation between the values at sample #5 and sample #6. The result
calculates to be 0.544203794 samples.

The next zero crossing occurs between sample #16 (value +6813) and sample #17 (value -
11743). Now we want to know the time t2, which is the fraction of a sample that occurs between
the time of sample #16 and the zero crossing. | hope that you can see that this fraction is given by,
in this case, 6813/ (6813 + 11743) = 0.367158870.

Next we can see that there are 10 complete sample periods in the cycle, between our two
fractional pieces t1 and t2. The complete period, measured in audio samples, is therefore t1 + 10
+ 12, which is 0.544203794 + 10 + 0.367158870 = 10.911362664.
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By now, we have determined that our audio cycle being measured, has a period of 10.911362664
audio samples. We also know that there are 48,000 samples per second. Therefore the Period of
the cycle in seconds, is 10.911362664 / 48000 = 0.00022732.

The frequency of the audio tone is therefore 1/ 0.00022732 = 4399.08 Hz.

All without anything too complex, no complicated DSP, Fast Fourier Transform, etc. Love it!

Error considerations

Now like any good scientist, we should consider the possible sources of error in this measurement
technique and try to understand if it is good enough for our purposes.

Thinking about it, | could envisage three possible sources of error: audio amplitude error, timing
error, and interpolation error (the straight line linear interpolation). Let’s consider each of these in
turn.

1) Audio amplitude error:

WSJT-X produces samples with 16-bit resolution. Other digimodes software may offer 24-bit
resolution but | have not come across any popular modes or software that do this. Neither do |
think there are any that provide BELOW 16-bit resolution. Since most users will use WJST-X, and
other software anyway has similar facilities, | will use WSJT-X for the purposes of discussion.

A 16-bit resolution provides 65,536 amplitude values per sinewave cycle. That's a theoretical (and
practically achieved, since we have the built-in USB soundcard and therefore a lossless, noiseless
transfer mechanism) 96dB dynamic range in the information transfer between WSJT-X and QDX,
a very accurate transfer indeed.

And yet — there are two scenarios where this can be dramatically reduced.
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The first scenario is where the operator uses the output amplitude slider at the bottom right of the
WSJT-X screen, to something less than maximum. On a more traditional digital modes station
involving a SSB transceiver, this would be done in order to avoid over-driving the SSB
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transceiver’s audio input, causing splatter. There is NO POINT to doing this on the QDX, since the
QDX RF output simply cannot be overdriven. The QDX RF output simply is, it is the perfection of a
RF signal without any spurious residual carrier or attenuated unwanted sideband, without any
audio harmonics due to over-driving and clipping.

But perhaps the operator wants to reduce the transmission output power, and uses the amplitude
slider to do this? Again there is NO POINT, because QDX does not transmit at reduced output
power. It's all or nothing. There is no in-between.

Therefore the operator should be advised for best accuracy, to leave the volume slider at the
maximum value, as there is no point to any lower value choice anyway. | found | was able to move
the slider to very low volumes anyway before the frequency measurement accuracy significantly
deteriorated. So this is not a particularly serious concern. But the recommendation still remains,
just leave the slider at maximum.

The second scenario where lower resolution sinewaves can be generated by WSJT-X, is during
the key-down and key-up instants, where WSJT-X applies (I believe), a raised cosine amplitude
envelope to the beginning and end of the transmission. For the sake of design simplicity and
because it is much less critical in digital FSK modes, than on/off keyed modes such as CW,
amplitude envelope shaping has been omitted from the QDX design.

So there is no point to WSJT-X sending reduced amplitude sine waves at the beginning and end
of the transmission key-down, since QDX cannot implement that anyway. Of course, WSJT-X
does not know this, and there is no way to turn it off, so it will happen anyway. We can't “advise”
WSJT-X software in the same way as we could advise the operator to leave the slider at maximum
setting, in the previous discussed scenario.

At very low amplitudes, there would be a much more significant quantization error due to the
limited amplitude resolution, that has the potential to increase the frequency estimation error
substantially at very low amplitudes such as when the raised cosine envelope shape starts. This
could cause a frequency estimation with a significant amount of error, and the Si5351A
Synthesizer to start producing RF at an incorrect frequency.

To avoid this possibility completely, the QDX has a configuration (“Rise threshold”) which allows it
to ignore any audio cycles until a certain percentage of full amplitude has been reached. This can
be set to a high percentage value such as 80 or 90%. This will ensure that there is no initial
frequency value with a high error. Transmission will not occur until the 80% threshold (for
example) is reached.

As a side-benefit, this will also FORCE the operator to keep the volume slider at the maximum
value, or there will be no RF output! The “advice” will become binding.

The threshold should not be set to a very high value such as 99% because at high frequencies,
where the cycle is made up of a smaller number of sample values, there may be no sample value
near the actual peak of the sinewave, and so it may take several cycles for perchance, a value to
exceed the threshold.

There is a similar “Fall threshold” setting to switch off the transmission at a defined amplitude
threshold, before the raised cosine trailing edge of the amplitude envelope generated by WSJT-X
takes the amplitude to a very small number and causes a potentially inaccurate frequency
measurement.

“Rise threshold” has a default value of 80% and “Fall threshold” has a default value of 60%; it is
unlikely the operator would ever want or need to change these from the default values. The default
values are not critical but they should be neither very small, nor very large; and furthermore the
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falling edge threshold should be somewhat smaller than the rising edge threshold, otherwise key-
up will be effected prematurely.

When the operator uses the maximum volume setting, and thresholds are implemented to avoid
the possibility of high calculation error at very low amplitudes which could occur during the raised
cosine leading and trailing edges, the effects of amplitude error are practically speaking, of no
consequence.

2) Timing error:

USB audio devices transfer data to and from their PC host at an agreed rate. In the case of QDX
it appears to the PC as a 48ksps (48,000 samples per second) 24-bit stereo USB sound card.
However, in common with all such USB audio systems, there is no facility for synchronization
between the PC USB host, and the USB device. In other words, there is no 48kHz clock signal
between the two. In the Full Speed USB protocol, the host and device communicate via data
packets sent 1000 times every second.

Now it can get all rather complicated... because the host may send data to the device at not
exactly 48kHz, and the device may send data to the host at not exactly 48kHz either. There are
specifications in the USB standards that define the worst allowable error percentage. Now both
ends of the connection have to try to deal with the fact that there is ALWAYS going to be a
difference between them. Even if both 48kHz crystals derive their sample rates from a quartz
crystal reference, the crystals will not be at exactly the same frequency.

In the case of QDX, there is a 25MHz TCXO that operates as the CPU clock input. All signals are
derived from this clock, including the 72.something CPU clock, and the 48MHz USB peripheral
clock (well, CLOSE enough to 48MHz), and the 12S peripheral master clock which is at 512 times
the sample rate (each sample has 512 clocks); or 48kHz x 512 = 24.576 MHz.

This 24.576 MHz signal is derived internally in the QDX, by a PLL multiplication factor of 117, then
division factors of 17 and 7. So 25 * 117 / (7 * 17) = 24.579832 MHz. Dividing by 512 gives an
audio sample rate of 48007.5 samples per second! As well as this synthesis accuracy limitation
there’s also the smaller imprecision in the 25MHz TCXO oscillation value.

Luckily, this small 7.5 samples per second difference is well within the allowable percentage error
in the USB sound device specification. On the PC side, the built-in USB driver has to deal with this
difference, in addition to the fact that its own master clock will also not be truly at precisely 48kHz;
it does so, | believe, not by digitally re-sampling to what it thinks is exactly 48ksps, but by some
kind of software phase lock mechanism.

On the incoming data from the PC over the USB interface, we're also not going to be getting data
samples at exactly what WE believe is 48ksps (our belief also being slightly inaccurate, itself). So
what do we do... certainly I'm not going to dabble in software PLL clock recovery; an option could
be do occasionally drop a sample if there are too many, or to duplicate a sample from time to time
when there are, in my judgement, too few.

But in the end, after all this waffle, none of it is necessary. It is perfectly acceptable to do
NOTHING about the lack of synchronization, just nothing at all! It is fine to pretend that we get
exactly 48,000 samples per second, and analyze them all perfectly as though everything was
exact. If there is any sample rate error, it will simply produce in the calculation result, a
proportionate error in calculated frequency. Even a 1Hz error, if it happened (and frankly, | have
never seen even a 0.01Hz error), would be of no consequence to operation of the transceiver,
alongside much more significant errors such as the precision of the RF synthesis.
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In the end therefore, the conclusion is that timing errors are of no consequence.

3) Interpolation error

Remember the approximation we have used for the zero-crossing interpolation that determines the
exact moment of the zero-crossing event? Mathematically, the approximation is that for small
values of x, then sin(x) equals x. Put another, less mathematical way, we can draw a straight line
between the two points we want to interpolate, which makes the calculation easy.

What can cause this to generate error? Well, when we are no longer dealing with “small values of
X". Practically speaking in our case, this occurs when there are a lower number of samples per
audio cycle.

Consider an extreme example, for the sake of demonstration — here is a an 8.4kHz sinewave
(much higher than we will ever be dealing with):
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You can see that the sample points, indicated by the X’s, are quite far apart. The zero-crossing
time, or the time between the two samples adjacent to the zero-crossing, is a relatively large
fraction of the cycle period. Our “x” is therefore not so small as it was before. The straight lines
that previously didn’t look at all bad, now look a lot less like the sinewaves that are being
approximated.

Now consider this sinewave which happens to be about 1.27 kHz:
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Obviously it LOOKS a lot better but we can also see that using straight lines at the zero crossing,
will be a very much better approximation to the sinewave, than the high frequency case.

We can therefore say that when the sample rate is fixed at 48ksps, a low frequency audio
sinewave is a lot more accurately interpolated, than a higher frequency audio sinewave. In other
words, the errors get bigger, and quickly so, as we increase the audio frequency. This can also
easily be seen experimentally by generating a signal in WSJT-X and then observing the measured
frequencies (this can be done using QDX’s own built-in tools, as described elsewhere in this
manual).

The error in frequency measurement is also reduced by measuring over more than one cycle.
Since we are adding a fraction of a sample at the beginning, and a fractional of a sample at the
end of each cycle, and counting the number of samples in between — any error on the fractional
estimations (due to linear interpolation error) will be reduced by counting multiple samples. For
example, if we measure for 2 cycles, the error will be halved. If we measure for 10, the error will be
reduced by a factor of 10.

As mentioned earlier, it is quite unnecessary to count the frequency so often as a SINGLE cycle. If
we are measuring say, an audio signal of around 3kHz — do we really need to measure it 3000
times per second? Not practically speaking, no.

So the QDX has a configuration built in, which specifies a number of cycles that must be
measured, and a number of samples that must be measured. BOTH of these parameters must be
satisfied, before the measurement activity completes. The default values are 1 cycle, and 480
samples. 480 samples is a time duration of 0.01 seconds. In this configuration, a very low
frequency signal, below 100Hz (0.01 seconds period) would be measured properly. And at any
higher frequencies than 100Hz, the minimum samples criteria will dominate, and ensure that the
averaging period is automatically increased for higher frequencies! For example at 3kHz, 480
samples will contain 15 cycles, so the error in the fractional period estimation due to interpolation
inaccuracy, will be reduced by a factor of 15. In this way, high frequencies do more averaging than
low frequencies; we get 100 frequency measurements per second.

Again these configuration parameters are not particularly critical, and again, the default values will
suffice for all imaginable purposes and most likely the QDX operator will never want or need to
change these, other than perhaps for his own curiosity of investigation.
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Sinewave interpolation

As an aside — for interest only — | did investigate the possibility of more advanced interpolation
methods than linear (straight line). | spent some enjoyable time experimenting with a method
which measures the amplitude of the sinewave (looking at the incoming samples) and then fits the
two samples either side of the zero crossing to an actual sinewave rather than a straight line.

It did provide some improvement, some observable reduction in error. However, the error
reduction was not as great as | had expected, and | suspect this is due to limitations in the floating
point accuracy of the arc-sin implementation, perhaps (speculation) a limitation to the number of
terms of a polynomial expansion? Furthermore, although the STM32 processor used has a floating
point unit, the calculations were still too slow at the 72MHz CPU clock speed used. In
experimental measurements the calculations were too slow to be able to perform single cycle
frequency estimation at the upper end of the frequency range, which is exactly where we most
need the improved accuracy; multiple cycles were therefore necessary and it was found that the
improvement in accuracy of averaging simple straight line interpolation over several cycles, was
more than the improvement in accuracy of the slow sinewave interpolation!

Furthermore other inaccuracies could creep in, such as the estimation of the maximum amplitude;
or we'd have to assume the maximum amplitude sinewave, which would work less well on the
rising and falling keying edges.

| toyed briefly (very) with the idea of trying to implement a three (or more) point sinewave fit, but
dismissed it as it would involve even more calculation and be even slower. Polynomial fits were
another possibility considered.

But frankly — in the end — the simple linear interpolation is very reliable at the frequency range of
interest, and is already SO good, that the idea of trying to pursue more advanced approaches,
seemed, particularly after a day’s worth of investigation, to constitute an unnecessarily frivolous
indulgence in mathematical decadence.

Errors conclusion

The frequency estimation by cycle timing method employed in QDX is exceptionally accurate, far
more precise than needed for any digi modes likely to employed on HF bands during QDX
operation (I cannot imagine any exceptions). There are a few boundary cases where accuracy
could conceivably be impaired, and though this is actually still unlikely to be of any practical
significance, configuration parameters are provided to mitigate and control the errors, with suitable
default values that will be excellent for all conceivable use cases.

As a final word on audio frequency estimation, | want to also mention that WSJT-X is said to
transition evenly between two frequency symbol tones, by implementing a raised cosine falling
envelope shaping on the finishing tone, at the same time as a raised cosine envelope shape on
the newly starting tone. As discussed previously, QDX just doesn’t do envelope shaping. However,
| believe that to all intents and purposes, that this fancy raised cosine tone envelope shaping is
equivalent to a gentle “frequency slide” between the old and new tone frequencies. Perhaps it is
even exactly mathematically equivalent, | don’t know.

At any rate — for any mode WSJT-X generates, QDX will continuously measure the frequency and
update the transmitter output frequency accordingly; at 100 updates per second (the default
configuration) this is plenty sufficient to achieve smooth transitions between tones; additionally the
frequency synthesis method used in the Si5351A itself causes a “slide” between frequencies not a
sudden discontinuous transition, because the PLL takes a finite time to settle on the new value.
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QDX contains its own test and analysis tools built-in; elsewhere in this manual is a description of
how you can observe these frequency transmissions yourself, using the built-in tools.

Si5351A fine control

Historically QRP Labs products have set up the Si5351A with an integer frequency, except for the
Ultimate3S QRSS/WSPR transmitter which has an algorithm during WSPR operation to optimize
the frequency steps for very accurate 1.46 Hz tone spacing.

The problem with QDX is that the QDX must faithfully transmit any frequency given to it. The tone
spacing may be very fine, or it may be coarse. QDX does not know. QDX knows nothing of the
transmission mode. All QDX does is receive audio tones from a PC and effectively modulate them
to RF. The tones may be 1.46 Hz spaced in the case of WSPR, or 6.25 Hz in the case of FT8, or
many other possibilities. Therefore a fixed algorithm for WSPR such as Ultimate3S has, or an
integer frequency configuration such as used in the QCX CW transceiver, will not be optimum
here.

As an example, suppose we want an output frequency of 14,097,002.123 Hz and the firmware has
to decide the parameters to configure the Si5351A chip. So let's say we chose a MS Synth divider
of 62 (abiding obediently by the even integer MS Synth divider rule). Now that means the internal
VCO must operate at 870,014,131.626 Hz. The multiplication factor from 25 MHz is therefore
870,014,131.626 / 25,000,000 = 34.960565265039996. Now that has to be represented asa + b/
c where all are integers, b is in the range 0 to 1,048,575 and c is in the range 1 to 1,048,575 (b
and c are 20-bit numbers — so the max value is 2 * 20 — 1).

The question therefore is the choice of b and c to get the fraction 0.960565265039996.
Conventionally one may simply set c to 1,048,575 and set b to 0.960565265039996 x 1,048,575 =
1,007,224. Now we can calculate the output frequency:

25,000,000 x (34 + 1,007,224 / 1,048,575) / 62 = 14,097,001.845 Hz

The error in the output frequency is 14,097,002.123 — 14,097,001.845 = 0.228 Hz. It's rather larger
than we might like; remember also that the error will be different every time and could be better or
worse than this.

Well it turns out we took the cowardly way out by choosing the denominator (c) to be 220 -1
(1,048,575) and that there are better choices which will bring the ratio b / ¢ very much closer to the
desired fraction 0.960565265039996. In fact the choice b = 416,333 and ¢ = 433,425 works very
well... look, now the output frequency is:

25,000,000 x (34 + 416,333/ 433,425) / 62 = 14,097,002.123 Hz
The error, to three decimal places, is now 0.000. Bingo!

However the question is STILL, how to choose b and c to get this magical and wonderful result.
The answer is “best rational approximation” which delves into an area of mathematics called
“continuing fractions”. Rather than spoil (and lengthen) this manual with my own garbled
interpretation, allow me to just refer you to Google and Wikipedia
https://en.wikipedia.org/wiki/Continued_fraction .

The implementation in QDX is a simple and fast iterative algorithm based on the information found
here, which rapidly converges on values for b and ¢ which provide a very optimal ratio.
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3.13 Class-D Push-pull Power amplifier
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An interesting power amplifier circuit was designed specially for this transceiver. There are four
BS170 transistors. Two are connected in parallel for the “push” side, and two connected in parallel
for the “pull” side. Each side is driven by two AND gates of a 74ACT08 quad AND-gate IC, in
parallel to ensure strong and fast drive.

The AND gate drivers are clocked from two outputs of the Si5351A Synthesizer which are
arranged to have 180-degree phase shift. This provides the necessary phasing for the “push” and
“pull” sides of the amplifier, without requiring an input transformer. All the 74AC08 AND gates are
enabled by a “transmit” or in other words, a “key down” signal from the microcontroller; only when
this signal is high, are the oscillator signals passed on to the MOSFET “gate” connections — this is
the operation of the logical AND function.

The outputs of the “Push” and “Pull” sides are combined by transformer T1.
This power amplifier design provides a number of useful features:

* Class-D operation is efficient compared to Class C, or even worse, Class A/B linear which
as discussed previously, is overkill for this application. Class-D is not as efficient as Class-E
(as used in the QCX CW transceiver), but it better suited to a multi-band transceiver, since
a Class-E amplifier has a resonant load circuit and this must be switched by band.

* Push-pull operation provides 5 W output power at a lower voltage than would be needed in
a single-ended amplifier (9 V supply produces about 5 W output).

* Push-pull operation cancels even harmonics which are therefore at a very low level (due
only to imperfect cancellation due to slight differences in transistor characteristics).
Importantly the 2" harmonic level is very low, which greatly simplifies the demands on the
Low Pass Filters that will subsequently clean up the signal after the amplifier.

* Push-pull operation allows us to use four BS170 transistors to spread the load, but they are
only connected in pairs so the driver only has to drive two paralleled gate capacitances not
four.
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* Using an antiphase drive (the precise 180-degree out of phase signals from the Si5351A)
eliminates the need for an input transformer that is normally required in push-pull power
amplifiers.

* All components are low cost and easy to replace in the unlikely event of failure.

As an example spectrum analyzer output, consider the following trace showing an 80m QDX. For
this measurement, a 50-ohm dummy load was connected directly at the output of transformer T1,
with no Low Pass Filtering.

The second harmonic is seen, about -70 dBc (70 dB below the fundamental) due to the
cancellation effect of the Push-Pull amplifier. The subsequent even harmonics are even lower
amplitude. Only the odd harmonics are problematic and require filtering.

PEAK 1/2
REF 37.0 dBa A_view B_blank

- NEXT PK
o RIGHT

CALLLEEIRL R T TLR TS s

3.14 Switched output Low Pass Filters

Every radio transmitter always requires low pass filters at its output to attenuate any out of band
spurious emissions to sufficient level to comply with regulatory requirements (for example FCC in
United States).

In QDX the Low Pass Filters are carefully optimized to provide excellent performance with low
parts count. This can be achieved because the Class-D push-pull power amplifier design produces
a very low level of even harmonics.
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It is very important to reiterate that Low Pass Filter and Power Amplifier design must be
considered carefully, at an overall SYSTEM LEVEL. In fact this applies to the entire transceiver
design, but nowhere more importantly than the transmitter output stages, where the performance
is critical to your regulatory compliance. The requirements on Low Pass Filtering are determined
by the level of spurious emissions produced by the final Power Amplifier as well as levels in earlier
stages feeding into the power amplifier. One cannot simply transplant a circuit block from one
transceiver design to another, and expect the performance to be satisfactory. System level design

is critical.

In QDX there are three Low Pass

Filters. Each is made up of a 5- A2
element filter, with a 6™ element as

resonant trap at the 3™ harmonic.

The three filters are: o
¢ 80m é I R
+ 40m E
+ 30/20m

The intrinsically low levels of 2™ T

harmonic is what lets us share the
third filter between 30m and 20m.

I
From Power Amplifier

There is a PIN diode switch either side of each Low Pass Filter. So at any one moment, one pair
of switches is activated, to switch the appropriate Low Pass Filter into the circuit.

The discussion of this block of the circuit divides naturally into a two parts: the LPF design, and the

PIN diode switches design.

Low Pass Filters

The Low Pass Filter design was done using the Elsie program by Tonne Software. It is freeware
and can be downloaded from here: http:/tonnesoftware.com/elsie.html

80m:

For 80m this is the final schematic, having a resonant trap at the third harmonic:

1 2
600 >

50 2.88232uH

820pF P N 1200pF

a

2.40349uH

470pF

50

ana

100pF

The simulation shows:
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Input Impedance

100 > 0
83.33 -10
66.67 \ -20
/\\0/
50 \ -30
3333 )\ * -40
-
[
16.67 [I—— 50
-
I
[ — ——
/ \\\\
0 -60
M M 3M am oM ™ 9M 11M 12m 13M 15M 16M 1™ 18M 20M 21M
Freq.: Trans.: Angle: Return Delay: VSWR: Zmag. Zangle: Real Imag.:
‘3.§HEI’Y 0.16781 -160.88 1.4085 162.9n 12.361 50.435 -15.651 48.565 -13.606
™ 26.362 0.91224 0.00398 49.69n >1000 37.606 -89.79 0.13815 -37.605
10.5M 67.461 142.11 0.00079 -23.32n >1000 20.633 -89.925 0.02715 -20.633
Fundamental: 3.5 MHz -0.17 dB
Second harmonic: 7.0 MHz -26.4 dB
Third harmonic: 10.5 MHz -67.5dB
40m:
For 40m this is the final schematic, having a resonant trap at the third harmonic:
1 2 3 4 5
600 >
20 390pF oAl 820pF 1'% 390pF 20
/\j fr— fe— 56pF fr—
20.6132M
The simulation shows:
Input Impedance
100 1 0
83.33 -10
66.67 -20
50 /-U/ i 30
33.33 \ -40
|
16.67 [— 50
= ——
0 [ — 60
M 3M 5M ™ 1M 13M 17M 21M 23M 25M 29M 31M 33M 35M 39M 41M
Freq.: Trans.: Angle: Return Delay: VSWR: Zmag.: Zangle Real. Imag.:
1 ‘INStEI’t 0.17461 171.98 1.4197 91.09n 12.264 49.066 4317 48.926 3.6934
2 14M 28.8 12.48 0.00585 22.73n >1000 43.088 -89.73 0.20315 -43.087
3 21M 72.145 129.76 0.00105 37.64n >1000 22.352 -89.907 0.03616 -22.352
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Fundamental: 7 MHz -0.17 dB

Second harmonic: 14 MHz -28.8 dB
Third harmonic: 21 MHz -72.1 dB
30/20m:

For 30/20m this is the final schematic, having a resonant trap at the 20m second harmonic,
28MHz. This is a departure from the 80 and 40m designs, which have the trap at the third
harmonic. The reason for this is that the 20m second harmonic is close to the 30m third harmonic.
This was found to represent an optimal compromise between 30m and 20m performance.

1 2 3 4 5
600 >
20 180pF 52/5%3/‘:% 470pF 39% 270pF =20
@ [— [— 82pF [—
27.9827M

The simulation shows:

Input Impedance
100 0

—
HNEN m
R N

-40

/
-y

\ /
/

33.33
T ——— R
\ |

16.67 -50

10M 12M 14M 16M 20M 22M 26M 30M 32M 34M 38M 40M 42Mm 44Mm 48M 50M
ans.: Angle: : Delay: VSWR: Zmag.: Zangle: Real

Rett
- 955 -172.35 -1.4555 52.56n 11.963 50.472 6.3897 50.159 5.6171
75 90.975 -0.00508 -3.458u >1000 52.054 -89.805 0.1769 -!

o

20m:
Fundamental: 14 MHz -0.12 dB
Second harmonic: 28 MHz -73.8 dB

On 30m, while the second harmonic (20.2 MHz) attenuation is only about 12dB, the even
harmonics are in any case at a very low level; the more important harmonic is the 3 harmonic and
for 30.3 MHz the attenuation is about -45 dB which is very satisfactory.
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Low Pass Filter switching

The schematic of the Low Pass Filters and switching arrangements is shown below.
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Very often relays are using for Low Pass Filter switching. However relays have several

disadvantages:

* Bulky
* Noisy
* Expensive

* Potentially unreliable (mechanical moving parts)
* Poor isolation at RF, can be important in some applications (unless expensive relays used)
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Cost and bulk are of critical importance here. A better solution comes in the form of diode
switching. Not just any old diode, PIN diodes. This is a fascinating topic and | did a great deal of
research and experiment to perfect the circuits used in the 50W PA kit http://qrp-labs.com/50wpa
and many of those ideas are carried over to the QDX design.

Ordinary diodes cannot be used for switching
because they could act as Rectifiers, switching on
and off in time with the RF cycle. A PIN diode, p n —
however, is different. It is a diode with a wide
undoped “intrinsic semiconductor” region between
the usual P-type and N-type doped semiconductor layers of a regular diode (Wikipedia image).

The important point is that this undoped “intrinsic layer” acts like a storage reservoir. When
incoming forward-biased current arrives, this “intrinsic layer” fills up with electrons. When the diode
is reverse biased, it takes time for all these electrons to empty out of the intrinsic layer. At high
enough frequencies, the time available is too short! So the diode never “turns off”. It remains
conducting through the whole RF cycle.

PIN diodes behave like variable resistances. Their resistance is determined by the amount of DC
forward bias current. They are near-perfect variable resistors which add very little distortion to the
signal. In our case, we don’t care about variable resistors, all we want is either a very low
resistance (On), or a very high resistance (Off).

A problem is that PIN diodes tend to be expensive, harder to find

items. However, a solution comes along, the 1N4007 rectifier
diode! This is the big brother of the 1N400x series of rectifier . :
diodes, and has a reverse voltage rating of 1,000 V. By good = /

fortune, its internal construction in order to achieve this very high
PIV rating, is very similar to a “real” PIN diode. Hence the
1N4007 is often referred to as the “Poor man’s PIN diode”!

No doubt the 1N4007’s characteristics are not repeatable enough, or its resistance not linearly
controllable enough, or some such other imperfection, that it is not suitable for all applications. But
in our application where all we need is an On/Off switch at HF, a 1N4007 costing mere cents
functions just as well as a “real” PIN diode costing 50x the price!

1N4007 functions well enough as a PIN diode switch across the whole of HF to 10m band, and
even down to 500kHz.

What about dynamic range and third order intercept point IP3? A properly handled 1N4007 should
not impact the dynamic range or IP3. An excellent set of measurements by Claudio IN3OTD see
https://www.gsl.net/in3otd/electronics/PIN_diodes/PIN_diodes.html and https://www.gsl.net/in3otd/
electronics/PIN_diodes/1N4007.html confirms the excellent characteristics of the 1N4007, which at
HF in this switching application are similar to other PIN diodes. Other experimenters have
determined similar results. Broad conclusions are that a properly biased 1N4007 at HF (1.8 MHz-
30 MHz) has the following characteristics:

*  “On” insertion loss less than 0.1 dB for 10 mA forward bias current
« “Off” isolation at least 30 dB (at worst case, 30 MHz frequency)
e |P3>+50dBm

Therefore the use of 1N4007 PIN diode switches should result in very little loss of transmitter
output power, very little loss of sensitivity on receive, and will not degrade the excellent IP3 (and
dynamic range) characteristics of the QDX transceiver with its high performance double balanced
Quadrature Sampling Detector front end.
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What of “proper biasing of PIN diodes™?

In my opinion the most excellent reference for the use of PIN diode switches for HF
Transmit/Receive is the work of Don W6JL. Don has a very informative page on QRZ.com https://
www.grz.com/lookup/w6jl and a long article “Homebrew PIN diode QRO QSK system” in
Funkamateur, March 2016 which is available as a PDF on the internet see
https://www.funkamateur.de/tl_files/downloads/hefte/2017/w6jl_improved gsk system_mar 2016.
pdf. Study of W6JL’s work should be the first task of anyone wishing to experiment with HF PIN
diode switching. Don has a separate homebrew transmitter and receiver. The transmitter is 600W
and is permanently connected to the antenna and the receiver, via his solid state PIN diode
switching system. Sidetone is via the receiver monitoring the transmitter directly! The switch
provides 137dB of isolation in the “Off” state. Amazing! We don’t need anything so extreme (or
complex) here — but the principles are well described by W6JL and his work is inspiring.

It is possible to distill the whole topic into two important rules:

* To switch the PIN diode Off, apply a large reverse bias VOLTAGE. The voltage should be
higher than the peak-to-peak RF being switched.

* To switch the PIN diode On, apply a forward bias CURRENT; the more current, the lower
the insertion loss. At 10 mA forward bias, the insertion loss is only about 0.1dB. One can
increase it a bit further, to be on the safe side.

When the two “rules” are followed carefully, the performance of the PIN diode switch is excellent;
furthermore it is low cost and reliable to implement using inexpensive common components like
the 1N4007. In the QDX transceiver the switching task is considerably simplified compared to the
50W PA kit, because here there is no need to support fast QSK (full break-in) operation or provide
a receive bypass path.

To understand the operation of the switching, consider just ONE of the Low Pass Filter circuits, the
30/20m circuit. At any time, one set of the three Low Pass Filter switch pairs are ON, and the other
two are OFF.

Let's consider first, the switch in the ON state. The partial schematic is:

SWitCh ON State Switch control

¢38mA (microcontroller)

To )I;l)(

>
—

V38mA 76mA

4"_,_”-_\«-)“ 76mA, T -
8

}_T Antenna port
v
i
;
HI
4
i
4
2
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Remember that for a diode to be ON, it should be passing at least 10 mA current. In QDX, the
forward current is set at 38 mA during transmit, this is determined by the bias circuit around Q1
and Q2 which will be discussed in a moment. Why so high, you may wonder? The reason for 38
mA is that the diode, if biased at lower forward currents, increases the level of even order
harmonics due to its own distortion. 38 mA switches it ON so well that the distortion level is very
low.

Remember also that capacitors block DC, but allow the passage of RF; whereas inductors block
RF, but allow the passage of a bias current (Direct Current, DC).

In the ON state, the microcontroller I/O pin controlling the Low Pass Filter is set to high
impedance, resistor R12 (10K) to +5V then pulls the potential at the gate of MOSFET Q5 to +5V,
switching ON the Q5 MOSFET. The bias circuit can now drive 38 mA through each of L1 and L11,
through the respective diodes D3 and D6, through L4 and L10 respectively, the sum of the
currents (76 mA) through L9 and through the Q5 transistor to ground. These flows are indicated by
the pink arrows on the diagram. The various capacitors block DC, only permitting the bias current
to flow through the components indicated by the pink arrows.

Now that a sufficient forward bias current flows in D3 and D6, RF will see a low resistance all the
way from the PA, through C34 and D6 to the Low Pass Filter; and on the other side of the filter, RF
will pass easily through D3 and C2 right to the antenna. L1 and L11 block RF from escaping into
the bias current circuits.

In the ON state, we think about current (forward bias current). In the OFF state, we must think
about voltage (reverse bias voltage). Here’s the same schematic, labeled for the OFF state.

SWitCh OFF state Switch control
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Remember the first rule of PIN diodes? “To switch a PIN diode off, apply a reverse voltage that is
larger than the peak-to-peak voltage of the applied RF”. Now, 5W of RF is 45V peak-to-peak
(assuming 50-ohms impedance) and therefore we need more than this, as reverse bias, to switch
off the diodes. Obviously this is not a voltage that is available from any supply rail! While Don
W6JL had available 350V from the screen grid of the valves (tubes) in his transmitter — we have
no such luxuries available here.
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The very neat solution is to “borrow” a little energy from the PA output itself! Then voltage double
and rectify it. The result is a nice clean DC which is always more than the peak-peak of the signal,
and plenty enough to reverse bias the diodes so they are always perfectly and completely OFF.

This doubler section of the schematic is formed by D9, D8, C32 and C27. The resulting voltage,
we shall call B+ in honour of valve (tube) circuits of old. Or HT if you prefer. It's exact value will

depend on the impedances and other factors but don’t worry, it is sufficient for the proper diode
OFF condition.

Now this voltage passes through resistor R9, through inductor L9, and through inductors L4 and
L10, right to the cathodes of diodes D3 and D6 respectively. The inductors don’t impede DC,;
resistor R9 would impede DC but the current involved is near zero so practically speaking there is
no significant voltage drop across R9. The anodes of diodes D3 and D6 are at a potential of about
+0.7 V. Why? Because whilst this Low Pass Filter is OFF, one of the other two LPFs is switched
ON, and 38 mA current is flowing through each of its diodes, resulting in a voltage across the
diodes of about 0.7 V.

So with B+ on the cathode and 0.7 V on the anode, the diodes see a large reverse bias voltages
and satisfy the conditions for the diodes to be OFF. They present a high resistance to the RF,
which cannot then flow through this Low Pass Filter. It is OFF.

The next thing to worry about is what happens when we are NOT transmitting. The signal during
receive, still needs to pass through the proper Low Pass Filter for the band of operation. Its
switches still need to be ON, and the other two LPFs OFF. Now there is no large 5 W (45 V peak-
peak) signal to rectify and double to make a large B+ voltage. On the other hand, we also no
longer need such a large B+ voltage, because now the Low Pass Filters (and their switches) are
only seeing the small signals picked up by the antenna. To provide some voltage to reverse bias
the PIN diodes, D7 connects +12V (the QDX supply voltage) to B+ during receive, when the
doubler is not producing rectified RF (during transmit).

The other minor detail to consider, is that during Receive we aren’t handling anywhere near such a
large amplitude signal so we don't really need such a large current as 76 mA (total for two diodes)
forward bias through the ON switches. A smaller current will suffice and will reduce the overall
QDX receive current, making it more battery friendly.

Here's the bias circuit

that generates the AN
appropriate forward

bipaps cErrents, TX enable from

. . microcontroller
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mode, the TX signal I_ L <
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L

microcontroller is at
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Q1 is a P-channel MOSFET and its gate is pulled to +12V when Q2 is off via 10K resistor R3,
meaning that Q1 is also switched off.

In this configuration current flows from the Vcc supply rail (+5 V) through the 1 K resistors R1 and
R6, and the inductors L1 and L11, to the respective two diodes. The current in each diode is given
by Ohm’s law | =V / R. The voltage across the resistor is 4.3 V because the voltage across the
diode is 0.7V approximately. Therefore the current flow in each leg is 4.3 V / 1000 ohms = 0.0043
A, which is 4.3mA.

So in receive mode, the forward bias in each of two diodes in the ON Low Pass Filter, is 4.3mA for
a total switch current of 8.6mA, which is not unreasonable.

When the TX signal from the microcontroller goes high, transistor Q2 switches on, pulling the gate
of Q1 to near ground potential, thereby switching Q1 on. Now 12 V flows through Q1, and through
each of R2 and R4, and on to the diodes. The current contribution through each resistor is given
by Ohm’s law | =V / R. The voltage across the resistor is approximately 11.3 V because the
voltage across the diode is 0.7V approximately. Therefore the current flow in each leg is 11.3 V' /
330 ohms = 0.0342 A, which is 34.2 mA. This sums with the current from the +5 V supply rail, to
give a total of 34.2 mA + 4.3 mA = 38.5 mA.

So in summary, due to this biasing circuit:

* In Receive, total switch current is 8.6 mA approximately
* In Transmit, total switch current is 77 mA approximately

3.15 Configurable PTT (Push To Talk) output
The Rev 3 QDX PCB has a 3.5mm stereo jack as PTT

output. N

The “Tip” connection is pulled to ground during transmit,
when Q13 is switched on by the microcontroller. |—

The “Ring” connection is pulled to +5V during transmit
when Q12 is switched on by the microcontroller.

. . VVVY
A common standard 3.5mm stereo audio cable with

3.5mm plugs at each end may be used without L AAAA
modification between the QDX and the QRP Labs 50W v

PA (which uses the positive-going +5V signal on the N
“ring” and makes no connection to “tip”. N\ L
During transmit, the microcontroller activates ONE of the

—A—

PTT signals; you may configure which one, according to
your needs.

It should be noted that: J—

®* The QRP Labs 50W PA may not be used in high
duty cycle modes such as FT8, JS8 etc at full power. It should be de-rated to half power
operation at maximum, by using a 12V or 13.8V supply. Caution is advised.

* The 50W PA kit has a built-in Low Pass Filter and is designed for signal band operation
only.

* Firmware 1.04 or above is required to use the PTT feature.
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3.16 Voltage regulation and supply decoupling

I%
HI

—
- —

The two fixed voltage regulators in the QDX design produce +3.3V and +5.0V. The +5V voltage
regulator type is 78MO05 and the 3.3V type is AMS1117.

The 78MO05 voltage regulator is robust, virtually indestructible. The AMS1117-3.3V regulator is a
much more delicate IC, but in this application it is only regulating voltage down from +5V from the
78MO5, so it is not being stressed and has a very low risk of failure. Note that this is a design
change with respect to the Rev 1 QDX PCB where both voltage regulators were AMS1117,
necessitating an additional 220uF capacitor at the power input; with the 78M05 used in Rev 2 and
above, this 220uF capacitor is not needed.

PCB Rev 2 and above additionally have a reverse polarity protection feature provided by the P-
Channel MOSFET type AO3407. This transistor may appear, at first sight, to be connected “in
reverse”, since the drain is connected to the incoming DC voltage from the DC connector, and the
source is connected to the downstream circuits. However, it is in fact correct and necessary.

In normal operation, at power-up a little current will flow through the forward-biased “body diode”
of the AO3407, raising the voltage at the source pin (on the right hand side of the transistor as
drawn in the diagram). The gate is connected to ground, hence the gate voltage is 12V (say)
below the source voltage, and the transistor switches on, as desired.

If the operator should happen to accidentally connect QDX in reverse, then the gate-source
voltage will be positive, which will ensure the P-channel MOSFET is switched OFF and no current
flows through it. Since the transistor was connected “backwards”, if the voltage is applied in
reverse, no current flows through the “body diode” either. It therefore achieves the desired reverse
polarity protection function.
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4 Performance measurements

Several QDX units have been measured; there are of course variations from one to another, due
to component tolerances, toroid winding style, etc. The results presented here are for a sample
QDX; all measured QDX were reasonably similar.

4.1 Receive current consumption

The following chart shows receive current vs supply voltage, per band. There is not much variation
and it is fair to quote 100mA as the receive current.

Receive current vs Supply voltage
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4.2 Transmit current consumption
The following chart shows transmit current vs supply voltage, per band.

Transmit current vs Supply voltage
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4.3 Power output vs supply voltage

Power output is consistent across bands. Operation at more than 6W output is NOT
RECOMMENDED and may destroy the power amplifier transistors.

Power output vs Supply voltage

Power output (W)

5 B [ 8 9 10 11 12

Supply voltage (V)

The following graph shows power output vs supply voltage for 40m operation, with the two
alternative output transformer winding arrangements. 3:2 is less efficient but more suitable if you
need to operate from a 12 — 13 V supply.

40m power output vs Voltage, transformer windings

== 3:2 winding
~%— 3:3 winding

Poweroutput (W)

4 ) B 7 8 ) 10 11 12 13 14

Supply voltage (V)
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4.4 Output harmonic content

Equipment:

QDX > QRP Labs 50-ohm dummy load kit > attenuator > Advantest R3361C Spectrum Analyzer.

Band 80m 40m 30m 20m

2" harmonic -53 dBc -55 dBc -43 dBc -55 dBc
3" harmonic -64 dBc -71 dBc -56 dBc -57 dBc
4™ harmonic -70 dBc Undetectable | Undetectable -70 dBc
5™ harmonic -70 dBc -73 dBc -62 dBc Undetectable

@RP
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4.5 Unwanted sideband suppression
Measured using the QDX'’s internal signal generator; unwanted sideband is 60-70 dB down.

—SB

QDX: USB and LSB -
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90
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-110

-120
0 500 1000 1500 2000 2500 3000

Frequency (Hz)
This is also seen on the QDX’s own terminal application, Audio sweep tool:

had jdev/ttyACM1 - PuUTTY + — + X

- Band down + Band up
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5. Resources

For updates and tips relating to this kit please visit the QRP Labs QDX kit page http://grp-

labs.com/gdx

For any questions regarding the assembly and operation of this kit please join the QRP
Labs group, see http://grp-labs.com/group for details

6. Document Revision History

1.00
1.01
1.02

1.03
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1.08
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08-Nov-2021
10-Nov-2021

23-Dec-2021
29-Dec-2021
03-Jan-2022

06-Jan-2022
07-May-2022

First draft version version 1.00
Lots of corrections; and update for firmware 1.01

Added note about IQ Mode not being applicable to WSJT-X and digi
modes software; and that firmware update files downloaded from the
QRP Labs website need to be unzipped before installation

Added 0.33mm wire specification to sections 2.11 and 2.12

Clarified T1 diagram 3:3 for 9V operation; and added notes to the text
about remembering to wind 2 turns secondary for 12V operation.

Minor typos corrected

Added recommended comms port settings for Windows, which seem to
make CAT communications more reliable according to some user
reports.

Revised for PCB Rev 2
Corrected error in section 2.12, continuity checks on trifilar transformer

Corrections to page 24 diagram, removed R34 reference, and typo on
page 17 (thanks Dave MOJTS for pointing these out)

Re-format only to correct some formatting problems

Revised for PCB Rev 3
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